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Abstract

This document contains the Final Performance Report for US AFOSR grant # FA9550-10-1-0092. It is
submitted by Prof. Semyon Tsynkov1 of North Carolina State University (the Principal Investigator) to Dr.
Arje Nachman of AFOSR (the Program Monitor). The report is based on four peer-reviewed Journal papers
completed during the performance period of the grant, from 04/15/2010 through 09/30/2013. Three of those
papers, [1], [2], and [3], have already been published, while the fourth one, [4], has has been submitted for
publication and is currently evaluated by Inverse Problems.

Chapter 2 of the report presents a detailed account of the methodology and the results of [1] and [3].
Chapter 3 discusses the approach and the findings of [4]. Chapter 4 reflects on the techniques and the
accomplishments of work [2]. In addition to that, Chapter 1 introduces the reader to the subject and
provides a general overview of the area, while Chapter 5 summarizes the work done during the performance
period of the grant and outlines possible directions for the future research.

Appendices A through O discuss various technical issues.

1Department of Mathematics, North Carolina State University, Box 8205, Raleigh, NC 27695, USA. Phone: +1-919-515-1877;
e-mail: tsynkov@math.ncsu.edu.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a coherent imaging technology that uses microwave electromagnetic pulses
primarily for imaging the surface of the Earth from airplanes or satellites, but it is also used to image the
surfaces of other planets like Venus or even moons like Titan. It is based predominantly on the phase
information of the emitted and received waves (as opposed, say, to conventional photography, which is based
on the amplitude). In particular, spaceborne SAR imaging of the Earth’s surface involves sending specially
shaped pulses of radio waves from a satellite to the ground, receiving the scattered response, and processing
it by means of a matched filter [5, 6]. In doing so, the received signal can, in some approximate sense, be
interpreted as a Fourier transform of the ground reflectivity function,1 whereas filtering that yields the image
is analogous to the inverse transform. The filter is called matched because its phase is supposed to match
that of the received signal.

However, when the signal of a spaceborne radar travels between the satellite and the ground, it becomes
subject to the temporal dispersion in the Earth’s ionosphere [7]. This causes delays in arrival times and
advances in the phases of the waves; the dispersion distorts the signal, and if the filter does not account for
that, a mismatch of the phase occurs and the quality of the image deteriorates [8]. The extent of deterioration
depends on the carrier frequency of the radar, or more precisely, on its ratio to the Langmuir frequency of
the ionospheric plasma. The higher the carrier frequency the less prone the image to ionospheric distortions,
requiring less processing of the data received. Also, higher frequencies correspond to shorter wavelengths, so
the physical size of the system itself can be smaller than one operating with longer wavelengths. Therefore,
many modern spaceborne SAR sensors operate on the frequencies of around 10GHz. For example, the
European satellite TerraSAR-X operates in the X-band, on the frequency of 9.65GHz.

Nonetheless, radars operating on lower carrier frequencies, in particular, in the UHF or even VHF band,
i.e., in the range of hundreds of megahertz (also referred to as the P-band [9]), have at least one key
advantage, which is a better surface/foliage penetrating capability. At the same time, their images are much
more sensitive to ionospheric distortions. Hence, an effort is justified aimed at correcting the matched filter
and reducing or removing those distortions. That brings us to the work presented in this report (see also
the original publications [1–4]), as well as in the preceding paper [8].2

We also emphasize that the matched filter must be corrected precisely for the time and place the image
is taken. The reason is that the extent of correction will depend on the current state of the ionosphere,
and the Earth’s ionosphere is not steady. Its characteristics such as the total electron content depend on
many factors, e.g., time of the day, time of the year, geographic location, level of Solar activity, etc., and
may change rapidly, namely, considerably faster than the period of one revolution of the satellite around the
Earth.

1In the simplest formulation [5], the ground reflectivity function is the difference between the reciprocal of the square of the
speed of light and the reciprocal of the square of the local propagation speed.

2Some performance criteria for the correction of ionospheric effects in SAR images obtained on low frequencies are discussed
in [10].
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2 CHAPTER 1. INTRODUCTION

1.1 Trans-ionospheric SAR fundamentals

In [8], the author analyzed the distortions for the case of SAR imaging by means of a scalar field (in the form
of linear upchirps) that propagates through the inhomogeneous ionosphere modeled as weakly dispersive
dilute cold plasma. The transverse electric field in such a medium is governed by the Klein-Gordon equation
(dispersive wave equation), see formula (2.8). The scattering at the target in [8] was considered in the
framework of the first Born approximation. The latter enables linearization and thus makes the inverse
problem of reconstructing the target properties (i.e., the ground reflectivity function) from the observable
quantities amenable to solution. Continuing the work started in that paper, repeating and enhancing the
results given in [1, 3], we begin in Chapter 2 with investigating the distortions of SAR images due to the
propagation of radar signals through a dispersive medium.

Our analysis allows for both a homogeneous and an inhomogeneous ionosphere where the inhomogeneity
can be vertical and horizontal (as analyzed in [3, Section 3]). We also consider a dissipative ionosphere, i.e.,
one where Ohmic losses are present. However, these losses attenuate the signal nearly uniformly and have
no noticeable effect on the phase, so they are not a major part of this study. Overall, the analysis enables
an accurate quantification of the group delay and phase advance that characterize the propagation, as well
as of the changes in the chirp duration and rate. As such, it leads to a precise description of the ionosphere-
induced mismatches between the received signal and the matched filter. Those mismatches are shown to
be the primary source of image distortions, and the distortions are quantified in terms of how the image
resolution, sharpness, and displacement depend on the parameters of the ionospheric plasma, primarily its
total electron content (TEC) along the signal trajectory.

This part of the study involves building and analyzing the generalized ambiguity function (GAF) for the
radar that takes into account the dispersive propagation in the ionosphere. We note that in Sections 2.2,
2.3, 2.4, 2.5, and later 2.10 (with the addition of another type of distortion, due to turbulence) we basically
develop a full-fledged radar ambiguity theory [6] for the SAR sensor operating through the Earth’s ionosphere
(monostatic, scalar case). To the best of our knowledge, prior to [8], a mathematical analysis of this type
has not been reported in the literature, even though there were a number of publications discussing the
effects of the ionosphere on SAR imaging, see, e.g., [11] or [12] (a review). An analysis similar to ours is
presented in [13], however, only for the case of a homogeneous background ionosphere. Knowing what the
distortions in the image caused by ionospheric dispersion are is only the first step, though. To improve the
image, mismatch between the matched filter and the received data must be removed.

In addition to analyzing the distortions in SAR images caused by the ionosphere, it was also proposed
in [8] to probe the terrain, and hence the ionosphere, on two distinct carrier frequencies. We expand upon
this idea in Section 2.6 and show in Section 2.7 that the resulting two images, while both incorrect per se,
can be used to reconstruct the unknown TEC along the line of sight, and the matched filter can be corrected
accordingly. Specifically, a given object or feature in the scene will be displaced from its true position if
imaged through the ionosphere. Considering the same object or feature imaged on two carrier frequencies,
we can write down a system of equations, in which the two observed distances to the object will be the data,
and the true distance and the TEC will be the unknowns. Solving for the TEC, we can get it as a function
of the shift between the two images. In addition, for a horizontally inhomogeneous ionosphere, this method
can be used to reconstruct the first moment of the azimuthal gradient of the electron number density. We
correct the matched filter by introducing the actual phase and group travel times, as well as the new chirp
rate, computed via the TEC. Then, by re-processing the raw data with the new filter, we can obtain an
improved image. By evaluating and analyzing the new GAF that is built with the help of the corrected
filter, we show that the quality of the image indeed becomes better, see [1].

It is to be noted that the idea of dual carrier probing for quantifying the ionospheric distortions of
satellite radio signals has been used in the GPS community for quite some time. For example, the near-
realtime GPS-derived global TEC maps are available on-line at http://swaciweb.dlr.de. In the literature,
work [14] discusses general effects of the ionosphere on the satellite to land radio propagation in the UHF
and L bands. Work [15] exploits the TEC data obtained from GPS-based measurements for evaluating the
extent of defocusing in space-based SAR images. Similarly, work [16] exploits the GPS derived TEC data to
determine the nature of phase artifacts in interferometric SAR images. The fundamental difference between
the GPS and SAR though is that in GPS there is a “sufficiently smart” receiver on the ground that can
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interpret the data it receives on two frequencies. In SAR, on the other hand, the imaged terrain is assumed
completely passive. Moreover, no artificial targets with a priori known characteristics are, generally speaking,
available, and the parameters of the ionosphere must be determined from the same data that are used to
form the image itself (scattered field received by the antenna on the orbit).

Unlike in GPS, the application of dual carrier probing for quantifying and mitigating the distortions of
spaceborne SAR images in the formulation above is new, see [1, 8]. The key consideration is precisely the
use of the same (redundant) data for both the image formation and the TEC reconstruction. Indeed, as
stated before, if the TEC data are acquired at a different location and/or different time, they may reflect
on a different state of the ionosphere and hence appear not particularly helpful for correcting the matched
filter to be used for a given image.

Prior to the work in [1, 8], we are aware of only one paper [17] that briefly touches upon the idea of two
frequencies for SAR, and also of an equally brief comment in [18, page 381]. The authors of [17] suggest
that the two frequencies can be taken from the available bandwidth but never actually develop the approach
beyond mentioning it as a potential strategy for obtaining the TEC. Another group of publications [19–22]
discusses and demonstrates the use of two sub-bands in the context of SAR interferometry. Some of the
methods of [19–22] also utilize the aforementioned difference in the displacement between the two images.
The interferometric approach, however, allows one to reconstruct only the differential TEC,3 although with
very high accuracy [21, 22]. Given the satellite revisit time of several days that characterizes both existing
and future SAR systems, and the volatility of the ionosphere, the requirement of having a repeat acquisition
makes the acquired information less valuable for many practical applications.

Several alternative approaches to deriving the ionospheric TEC have also been proposed in the literature.
Some of them are motivated by the launch of the Japanese Advanced Land Observation Satellite (ALOS)
that carries a phased array SAR instrument (PALSAR) operating in the L-band. In [23] and [24], it is
proposed to use the Faraday rotation (see Chapter 3) for retrieving the TEC information from the the fully
polarimetric quad-channel SAR data, in case the corresponding SAR sensor provides this capability (which
ALOS PALSAR does, see [25, Section 10.4]). The authors of [23] also present the estimates of the group
delays and phase advances for a non-turbulent ionosphere similar to those obtained in the previous paper
in this study [8]. An even earlier publication discussing the effect of Faraday rotation on polarimetric SAR
is [26]. Of course, if the fully polarimetric data are not available (or, otherwise, if polarimetry puts too high
of a demand on storage, downlink capacity, etc.), then the approach based on the Faraday rotation is not
going to work. For example, the authors of [17] also rely on the Faraday rotation for TEC reconstruction (in
fact, they consider it the only source of image distortions), but emphasize that for other types of sensors (e.g.,
single-channel), an explicit a priori estimate of the Faraday rotation is needed for introducing corrections.
The authors of [19] indicate that in the absence of external information one can use autofocus algorithms
(see [27, Section 3.9.1] or [28,29]) to obtain the TEC, which is not a very reliable approach though, whereas
the SAR system itself (L-band) can be efficient in obtaining the difference of the TEC distributions between
the two radar acquisitions. The authors of [30] present two approaches; the first one involves a spaceborne
radar operating on a very low frequency, below the Langmuir value, and is similar to the traditional ground-
based sounding. The second one uses a higher frequency and derives the TEC information by analyzing
the returns from the specially chosen bright point targets. The authors of [31] employ a model known as
the ionospheric phase screen to analyze the effect of auroral arcs (special electron density irregularities) on
spaceborne SAR images taken in the polar regions of the Earth. Finally, the authors of [32] introduce two
methods for measuring the ionospheric TEC based on single-polarized data. The first one estimates the TEC
from the phase error of the filter mismatch and requires high contrast strong point targets such as corner
reflectors within an otherwise dark area; the second one requires two different interrogating waveforms, up
and down linear chirps, and estimates the TEC from the path-delay differences between them. We note that
none of these papers, see [19–23,26,30–32], provides a comprehensive analysis of how the reconstructed TEC
can be used for correcting the filter and subsequently improving the image.

As far as our own work, after demonstrating (as seen in [1]) that the filter corrected by dual carrier probing
indeed helps improve the image, we proceed in Section 2.8 (as seen in [3]) to analyzing the robustness and
accuracy of the TEC reconstruction itself. The goal is to see what happens if the TEC is reconstructed not
precisely, but with some error. One of the reasons the TEC reconstruction may be prone to an error is that

3 It is the difference between the TEC distributions for two successive data acquisitions.
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the formula for the TEC derived in [1, 8] by taking the two distances to a given object as the data appears
poorly conditioned with respect to each individual distance. The first obvious remedy is to use several
distinct objects instead of just one. In this case, the overall error can be reduced by a factor of

√
L, where

L is the number of objects (under a natural assumption that the values of the TEC computed for individual
objects can be interpreted as independent random variables). However, a more promising approach is to
use the technique known as area-based image registration [33]. It allows one to superimpose the two shifted
images and obtain the shift as an independent quantity that is not related to the distance from the satellite.
The accuracy of the modern registration techniques can be as high as a few percent of the resolution pixel,
see, e.g., [34–38].

Thus, we show that if an area-based image registration approach (see, e.g., [39, 40]) is employed for
evaluating the shift, then the robustness, and hence the accuracy of the TEC reconstruction, considerably
improves. In Section 2.9, for the phase correlation method, we obtain specific quantitative estimates of how
the error in the value of the shift affects the error in the TEC and how the latter, in turn, affects the final
quality of the image. Of course, these results withstand a natural “backward compatibility check.” If we
assume that there is no error in the value of the shift, then there will be no error in the value of the TEC,
and eventually all the deterministic distortions of the image will be completely removed, as in [1].

Although most of the report focuses on the distortions caused by the deterministic part of the ionospheric
phenomena, we also look at the distortions of SAR images due to the ionospheric randomness (caused
by turbulence). These distortions are related to the fluctuations of the electron number density of the
ionosphere and can be quantified reasonably well, see, e.g., [8], as well as [13, 41–44]. However, mitigating
those distortions requires a substantial additional effort: obtaining the statistics of radio waves based on the
statistics of the medium (turbulent ionosphere), see, e.g., [45–47], and then modifying the signal processing
algorithm (the matched filter) accordingly, and even then all of the distortions may still not be mitigated. We
investigate the issue of ionospheric turbulence in Section 2.10 and find that it is much more of an issue for the
azimuthal (parallel to the flight track) resolution than the range (normal to the flight track) resolution. In
fact, the distortions in range are completely removed by correcting the filter for the deterministic errors alone.
This “unevenness” between the range and azimuth stems from the performance of a spaceborne SAR in range
being practically not affected by the ionospheric turbulence due to the ergodicity of the random field that
represents the fluctuations, whereas the performance in azimuth being sensitive to both the deterministic
and random component of the electron number density. In the literature, the subject of mitigating the
distortions caused by turbulence has not received too much attention; among the relevant publications we
mention [48, 49], where the authors propose several approaches to reducing the random component of the
phase error.

For the rest of the report, we will assume that the SAR imaging is done in the stripmap mode, and
that it is broadside, i.e., that the antenna always points in the direction normal to the orbit, see Figure 1.1.
We will also employ the start-stop approximation for our analysis [5, 50]. In Table 1.1, we present the key
parameters and their typical values that we use hereafter (excluding Chapter 4). Note that along with the
physical units of the TEC, cm−2, used in Table 1.1, engineering units defined as 1TECU=1012cm−2 can
often be found in the literature. We also use the electrostatic CGS units throughout this report.

1.2 Anisotropy as it relates to SAR

In Chapter 2, we deal with inhomogeneity of the mean electron number density, but this is done within an
isotropic framework. Namely, the permittivity of the plasma, which is due to the interaction of the impinging
electromagnetic field with the electrons, may vary both horizontally and vertically, but may not vary as a
function of the local propagation direction. The matched filter in this case is corrected by introducing a
total electron content (TEC) over the ray path.

Looking at anisotropy both in the propagating medium and at the target are the logical next steps
in adding complexity to the model introduced in the isotropic framework. In Chapter 3, we study the
electromagnetic propagation in a plasma with the presence of a magnetic field, and in Chapter 4 we take
into account the anisotropy of the target material. These add new levels of complexity to the model but are
significant steps toward improving the interpretation of spaceborne SAR images obtained on the frequencies
low enough where the ionosphere is a major issue.
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Parameter Notation Typical value Reference
Radar carrier frequency ω0

2π 300MHz (2.4)
Carrier wavelength λ0 = 2πc

ω0
1m (2.4)

Bandwidth B
2π 8MHz (2.18)

Pulse (chirp) duration τ 5 · 10−5s (2.18)
Pulse repetition frequency fp 2KHz page 15
Total electron content in the ionosphere NH 5 · 1013cm−2 (D.8)
Plasma electron (Langmuir) frequency

ωpe

2π 9MHz (2.8)
Collision frequency in the ionosphere νe 105Hz (2.55), (E.1)
Satellite velocity vSAT 7.6km/s page 15
Length of synthetic aperture LSA 50km page 15
One-way distance from orbit to target R 1000km (2.76), Fig. 1.1
Orbit altitude H 500km Figure 1.1

Incidence angle cos θ = H
R 60◦ Figure 1.1

Registration accuracy, in resolution units ζR, ζA 0.05 (2.119), (2.126)
Carrier frequency separation factor Z 10% (2.121)
Relative magnitude of fluctuations M 5 · 10−3 (2.11)
Outer scale of ionospheric turbulence r0 1km — 10km (2.15)
Integral squared mean electron density N2,H 5 · 1019cm−5 (2.139)
Magnetic field of the Earth, CGS units |H0| 0.31 — 0.58 G (J.4)

Electron cyclotron (Larmor) frequency |Ω|
2π 0.87 — 1.6 MHz (J.4)

Table 1.1: Typical values of parameters throughout most of this report.

1.2.1 Anisotropic medium — an external magnetic field

Chapter 3 is an extension of the main focal point of the study: the SAR imaging through the ionosphere and
construction of the generalized ambiguity function. However, we are no longer ignoring the polarization of
the radar pulses. Typical SAR systems emit linearly polarized signals. Knowing that the waves are linearly
polarized allows us to consider the anisotropy of the medium in which they propagate. The Earth’s magnetic
field introduces a significant anisotropy in the ionosphere (gyrotropy), and therefore it is vital to analyze
its effect on the ambiguity theory that is being developed. Analysis of the Faraday rotation,4 which is the
change in a wave’s plane of polarization due to propagation in a magnetized plasma, is thus warranted.
While it was mentioned in Section 1.1 that others have proposed using it to obtain the TEC [23, 24], this
capability is limited to the fully polarimetric SAR data. In a single polarization framework though, the
Faraday rotation must be accounted for as it has the potential of severely distorting the received signal and
hence the image.

Chapter 3 is the first step in this direction. We construct the generalized ambiguity function for single
polarization images in the presence of Faraday rotation. As expected, additional parameters dependent on
the external magnetic field arise that are not present in the isotropic case. We are able to identify these
parameters and show how the effect of Faraday rotation varies along the length of the chirp. As for the
GAF, we show that the Faraday rotation only affects the range part; the azimuthal part is identical to that
in the isotropic case analyzed in Chapter 2.

Although the Faraday rotation affects the propagation of a chirp, the magnitude of the effect can vary
depending on the values of the parameters involved. It can sometimes be difficult to detect the Faraday
rotation by a single-polarization instrument. In Chapter 3, we present three possible scenarios as far as
how much the rotation affects the chirp, and analyze the one for which the rotation is neither too small
nor too large. Within the specifications of this intermediate case, we propose a method to determine the
parameters that characterize the Faraday rotation given the image obtained. Once these values are known,
a new corrected filter can be constructed to improve the SAR performance in range. These corrections can

4The rotation is named after Michael Faraday, a prominent 19th century scientist and pioneer in the field of electromagnetism.
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Figure 1.1: Schematic for the broadside stripmap SAR imaging.

be applied on top of the corrections derived in Chapter 2, providing compensation of both dispersion and
Faraday rotation effects.

1.2.2 Anisotropic target material

Chapter 4 deals with the scattering at the target, which could also be anisotropic, with the focus being on
the degrees of freedom in the scattering model. Ultimately, we are able to provide a necessary and sufficient
condition under which interpreting the target material as a weakly conductive uniaxial crystal allows one
to reconstruct all the degrees of freedom contained in the complex 2 × 2 Sinclair scattering matrix5. As in
the previous parts of our study, we are assuming that the scattering is weak, i.e., the scattered field is much
smaller than the incident field. This, again, allows us to invoke the first Born approximation, which is a
very important simplification, as otherwise the nonlinear inverse problem would be very difficult, if at all
possible, to solve [5, 6].

Using the first Born approximation, we start in Section 4.2 with the most basic kind of scatterer: an
isotropic dielectric, and slowly add layers of complexity. The next framework we analyze is that of a
perfect birefringent dielectric. We restrict ourselves with a uniaxial crystal model because it is the simplest.
Following this, we repeat the studies of isotropic and uniaxial scatters but allow them to have a finite
conductivity, making them lossy dielectrics. The study of lossy uniaxial dielectrics is broken down further
because the conductivity can also be isotropic or anisotropic. Again, we are only considering the uniaxial

5This matrix is widely used to describe the relation between incident and scattered monochromatic waves since the concept
was first introduced by George Sinclair in [51].
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anisotropy. After adding the final level of complexity, i.e., anisotropic conductivity, we find that all of the
degrees of freedom of the Sinclair matrix are recovered.

It turns out though this problem does not have a solution for every combination of possible entries for
the scattering matrix. However, we are able to provide a necessary and sufficient condition for the solution
to exist and demonstrate that the presence of a “region of nonexistence”, so to speak, for the solution is not
due to the first Born approximation that we use but rather is an inherent feature of scattering off the target
material with the chosen structure.

Furthermore, all these scenarios of increasing complexity assume that the wave is coming from a vacuum
and is being scattered off a half-space with certain properties. However, for SAR imaging, the target material
is usually considered concentrated only on the surface of the half-space [5]. We show in Section 4.3 that
the two setups are equivalent in the sense that the reflected fields for both are the same in the first Born
approximation.

Modern practical applications of radar polarimetry employ different empirical and semi-empirical cri-
teria that rely on the entries of the Sinclair scattering matrix. Examples include a co-polaraized phase
difference-based study of oil spills [52], an algorithm for reconstructing the ocean surface slopes that utilizes
all four channels [53], several soil moisture retrieval algorithms analyzed in [54], and vegetation classification
technique that uses multi-frequency polarimetric data [55]. Additional references can be found in [25]. In
contradistinction to all those techniques that interpret the entries of the scattering matrix phenomenolog-
ically, we are able to reconstruct the physical characteristics of the scattering material within the adopted
model, namely the principal values of the permittivities and conductivities, i.e. those associated with the
principal axes, and the orientation of the optical axes in regards to the plane of incidence.
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Chapter 2

SAR in an isotropic framework

2.1 Chapter layout

The current chapter is based on [1] and [3] and is organized as follows. In Section 2.2, we introduce the
physical model for the propagation of radio waves in the ionosphere. This model has a deterministic and a
stochastic component. The stochastic component is due to turbulence, and in Section 2.2 we also present
the basic formulas that we use to describe the turbulence. In Section 2.3 we introduce the generalized
ambiguity function, or GAF. The concept of GAF appears when considering the matched filter applied to
the SAR signal scattered off the target and received by the antenna, and then summing up the contributions
from all the pulses along the synthetic array. As seen in [5], the GAF can be interpreted as the image of
a point target. It provides a convenient way to assess the radar performance. In Section 2.3 we assume
that the shape of the pulse that the radar transmits is a linear upchirp, which is common, and investigate
how these pulses travel between the antenna and the target in three separate scenarios: unobstructed non-
dispersive propagation, dispersive propagation in a homogeneous ionosphere, and dispersive propagation in
an inhomogeneous ionosphere. We also look at how the latter two scenarios affect the GAF.

The effect of the ionosphere on the SAR performance is analyzed in detail in Sections 2.4 and 2.5, where
we show that temporal dispersion in the ionosphere can lead to image displacement and can also result in a
loss of image resolution and sharpness in both range and azimuth. The distortions caused by the ionospheric
dispersion can actually be quantified, demonstrating the significance of the issue and why mitigation of the
distortions would be greatly beneficial.

Following the idea put forth in [8, Section 3], Section 2.6 proposes to probe the terrain, and hence the
ionosphere, on two distinct carrier frequencies. From the information gathered from this double probing,
one can set up a system of equations and solve for the total electron content, TEC, of the ionosphere along
the ray path. The resulting TEC can then be used to construct a corrected matched filter for the GAF. If
the reconstruction is accurate, then, as seen in Section 2.7, the images obtained through the new matched
filter are greatly improved from their non-corrected counterparts in Sections 2.4 and 2.5.

However, the original approach of [8] to TEC reconstruction based on dual carrier probing appears
poorly conditioned, meaning that it is sensitive to errors in the input data. We discuss this in Appendix G.
In Section 2.8, we show that probing the ionosphere on two carrier frequencies can rather be combined with
image registration, which yields an accurate and robust procedure for TEC reconstruction. Still, even with
the best registration techniques, the TEC will not be reconstructed exactly, and it is important to see how
the errors in the reconstruction affect the performance of the corrected matched filter. We look into this in
Section 2.9.

Finally, in Section 2.10 we turn our attention to ionospheric turbulence, which is a crucial feature of the
ionosphere. We quantify the distortions of the image due to the turbulent fluctuations of the ionosphere
and find that the azimuthal resolution is much more sensitive to the turbulence than the range resolution.
However, the issue of mitigating the distortions due to the turbulent fluctuations is left for future study.

Appendices A through I correspond to this chapter and are arranged in the order they are referenced.

9
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2.2 The model

2.2.1 Fundamentals

For the discussion in the current chapter we adopt the same model as in [8]. We analyze the standard (as
opposed to interferometric) SAR images [27], i.e., all the images are considered two-dimensional (range and
azimuth), and the elevation is not taken into account. We also assume that the images are rendered by
scalar propagating fields, i.e., that the polarization can be disregarded [5, 6]. All the targets are assumed
deterministic (no randomness is involved in describing them) and dispersionless (the scattering properties
are not frequency-dependent within the spectrum of the radar signal); scattering of radar signals off the
targets is linearized and interpreted using the first Born approximation. The start-stop approximation is
employed to describe the synthetic antenna; its applicability to spaceborne SAR sensors is justified in [50].

The ionosphere is modeled as a layer of inhomogeneous dilute plasma: the mean concentration (number
density) of electrons can depend on both the altitude and the horizontal coordinates (as seen in section 2.5).
In this chapter we disregard the effect of the magnetic field of the Earth on the propagating waves. This
implies, in particular, that the Faraday rotation is not taken into account. On top of its mean value, the
electron number density has a stochastic component due to the ionospheric turbulence, which is a quasi-
homogeneous random field [45,56]. The effect of the Earth’s magnetic field on the ionospheric turbulence is
disregarded, and the turbulence is assumed isotropic.

The propagation of electromagnetic waves in the ionosphere is analyzed with the help of the cold plasma
approximation [7], which requires that the phase speed of the waves be much faster than the thermal speed of
the electrons. The cold plasma approximation is equivalent to disregarding spatial dispersion and taking into
account only temporal dispersion of radio waves in the plasma [57]. Moreover, the propagation is assumed
linear, because the power of signals emitted by spaceborne antennas is typically much lower than that needed
for setting off the nonlinear effects, see [58–60], as well as [7, Ch. VIII].

We use the classical Helmholtz theorem [61] to partition the overall electric field into the longitudinal
and transverse components. Then, from the full Maxwell’s equations and the equation of motion of electrons
in the electric field one can derive the Klein-Gordon equation (see [8, App. A]) that governs the propagation
of high frequency transverse1 electromagnetic waves in dilute plasma:

∂2E⊥
∂t2

− c2∆E⊥ + ω2
peE⊥ = 0 . (2.1)

The quantity ωpe in equation (2.1) is the Langmuir frequency, or plasma electron frequency. It characterizes
temporal responses of the plasma and is given by:

ωpe =

√
4πe2Ne

me
, (2.2)

where e and me are the charge and mass of the electron, and Ne is the electron number density. The
behavior of ω2

pe in the ionosphere follows that of Ne; it has an altitude-dependent deterministic component
and a stochastic component due to the turbulence. Typical values of the Langmuir frequency in the Earth’s
ionosphere range between 19 and 94 megaradians/s, which corresponds to between 3 and 15 MHz.

Unlike in a vacuum, the propagation speed of electromagnetic waves in the ionosphere depends on the
frequency. This phenomenon is known as temporal dispersion; it is due to the presence of the last, non-
differentiated, term in equation (2.1). The dispersion relation for the Klein-Gordon equation reads:

ω2 = ω2
pe + c2k2, (2.3)

which is derived by substituting the form of a plane electromagnetic wave,

ϕ ∼ ei(ωt−kr), (2.4)

1The corresponding longitudinal oscillations are known as Langmuir waves, in a cold plasma they have zero group velocity [57].
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into (2.1). We emphasize that according to (2.3) the short waves are weakly dispersive, whereas the long
waves are subject to stronger dispersion. Indeed, the phase and group velocity of the propagation (ω/k and
dω/dk, respectively) are given by:

vph = c
(
1 + ω2

pe/c
2k2
) 1

2 (2.5)

and

vgr = c
(
1 + ω2

pe/c
2k2
)− 1

2 , (2.6)

so that the shorter the wave (the larger the k), the closer both velocities to the non-dispersive limit v = c.
Also, (2.3) yields the following expression for the dielectric constant ε of a cold plasma:

k2c2

ω2
= ε = 1−

ω2
pe

ω2
. (2.7)

In the Cartesian coordinates we can consider equation (2.1) for individual field components:

∂2E

∂t2
− c2∆E + ω2

peE = 0. (2.8)

In the rest of the chapter, we will use the scalar governing equation (2.8) to describe the propagation of
electromagnetic waves in the ionosphere. For a comprehensive account of the propagation of radio waves in
plasma we refer the reader to the monographs [7] and [62].

2.2.2 Turbulence basics

To characterize the ionospheric turbulence, we write the electron number density as follows:

Ne = 〈Ne〉+ µ(x ), (2.9)

where the angular brackets 〈 · 〉 denote the expected value (mean) and µ represents the fluctuations: 〈µ〉 = 0.
In the simplest case of constant 〈Ne〉, µ(x ) is a homogeneous and isotropic random field, and its correlation
function depends only on the distance r = |x1−x2| and not on the individual locations x1 ∈ R3 and x2 ∈ R3:

V (x1,x2)
def
= 〈µ(x1)µ(x2)〉 = V (|x1 − x2|) ≡ V (r). (2.10)

In reality, however, 〈Ne〉 is a function of the altitude h. At the same time, the ratio

M =

√
〈µ2〉
〈Ne〉

(2.11)

is assumed constant. A typical numerical value of M is 5 · 10−3, and in extreme situations it may reach
10−1 [43]. Hence,

√
〈µ2〉 also depends on x1 and h, which makes µ(x ) a quasi-homogeneous (rather than

truly homogeneous) random field. While in this case we still keep the same notation (2.10) for the correlation
function, in fact we have V = V (x1, h, r), where the dependence on x1 and h is slow and the dependence on
r (local variable) is fast.

For the Kolmogorov-Obukhov turbulence, the spectrum is (see [63, Section 12.1]):

V̂ (q) =
C

(1 + q2/q2
0)κ

, where κ =
11

6
and C = const. (2.12)

Hence, the correlation function evaluates to

V (r)
def
=

∫∫∫ ∞
−∞

V̂ (q)eiqrdq = 4π

∫ ∞
0

sin qr

qr
V̂ (q)q2dq

=
1

Γ(κ)
2

5
2−κCπ

3
2 q

3
2 +κ
0 r−

3
2 +κKκ− 3

2
(q0r),

(2.13)
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where Kκ− 3
2

is the Macdonald function, or modified Bessel function of the second kind (see, e.g., [64, Chapter

VII, § 3]). Asymptotically for large r, we have Kκ− 3
2
(q0r) ≈

√
π

2q0r
e−q0r, so that the correlation function

decays exponentially:

V (r) ≈ 22−κ

Γ(κ)
Cπ2

(q0

r

) 3
2

(q0r)
κ− 1

2 e−q0r. (2.14)

This means that effectively we are taking into account only short-range phenomena in the ionosphere. The
quantity q0 in formulae (2.12)–(2.14) helps define the correlation length r0, or the outer scale of turbulence:

r0
def
=

1

V (0)

∫ ∞
0

V (r)dr =

(
Cπ

3
2

Γ(κ− 3
2 )

Γ(κ)
q3
0

)−1
Cπ2q2

0

κ− 1
=

√
πΓ(κ)

(κ− 1)Γ(κ− 3
2 )

1

q0
, (2.15)

where we have taken into account that

V (0) =

∫∫∫ ∞
−∞

V̂ (q)dq =

∞∫
0

2π∫
0

π∫
0

V (q)q2 sin θdθdφdq = Cπ3/2q3
0

Γ
(
κ− 3

2

)
Γ(κ)

. (2.16)

The value of r0 in (2.15) ranges between 1km and 10km according to different sources in the literature. The
value of the constant C in (2.12) is related to the variance 〈µ2〉 of µ(x ), which follows immediately the
definition (2.10) and normalization (2.16):∫∫∫ ∞

−∞
V̂ (q)dq = 〈µ2〉 ⇒ C =

〈µ2〉Γ(κ)

π
3
2 q3

0Γ(κ− 3
2 )
. (2.17)

Moreover, because of (2.14), the correlation function (2.13) clearly satisfies the necessary and sufficient
condition for ergodicity of µ(x ) known as the Slutskii theorem (1938), see [56, Section 4.7]:

lim
S→∞

1

S

∫ S

0

V (s)ds = 0.

Hence, we can substitute statistical means for spatial averages of µ when averaging over long distances.
In [65, Section 5.1] one can find some experimental data on the spectra of the ionospheric turbulence.

For the purpose of obtaining specific quantitative estimates, we will use the typical values given in Table
1.1. The effects of turbulence on a SAR image are analyzed in Section 2.10.

2.3 The generalized ambiguity function

The generalized ambiguity function offers a convenient way of assessing the radar performance. It is basically
the image of a point target, i.e., that of a delta-type scatterer. In the ideal world, this image would be a
delta-function as well. In reality, however, it is smeared out (by the nature of the radar signal processing,
even when there is no ionosphere and no dispersion), and the extent of this smearing provides the limits of
radar resolution.

The interrogating pulses emitted by the antenna of a SAR are taken as linear upchirps2 of the form:

P (t) = A(t)eiω0t, where A(t) = χτ (t)eiαt
2

. (2.18)

In formula (2.18), χτ (t) is the indicator function of the interval of duration τ :

χτ (t) =

{
1, t ∈ [−τ/2, τ/2],

0, otherwise,
(2.19)

2High-range resolution waveforms, see [6].
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and α = B/(2τ), where B
2π is the bandwidth of the chirp (for an upchirp, α > 0). Accordingly, the

instantaneous frequency of the chirp [5, 6], ω(t)
2π , is given by

ω(t) = ω0 +
Bt

τ
, t ∈ [−τ/2, τ/2], (2.20)

where ω0

2π is the center carrier frequency. The modulating function A(t) in formula (2.18) is assumed slowly
varying compared to the fast carrier oscillation eiω0t:∣∣∣∣dAdt

∣∣∣∣ = |2αtχτ (t)| ≤ 2α
τ

2
= ατ =

B

2
� ω0 =

∣∣∣∣ ddteiω0t

∣∣∣∣ .
Hereafter, the radar is assumed to operate in the stripmap mode, see [66], when the antenna points in

a fixed direction relative to that of the satellite motion.3 Hence, the footprint of the beam emitted by the
antenna sweeps a strip on the Earth’s surface parallel to the flight track, i.e., to the orbit.

To obtain the image, the antenna emits a series of pulses (2.18) when moving along the orbit. Those
pulses travel to the Earth’s surface, get scattered off the ground, and propagate back toward the satellite
where they are received by the same antenna (in the case of a monostatic SAR [66]). In doing so, clearly, both
the emission and the reception of pulses are done by a moving antenna (which gives rise to the Doppler fre-
quency shift) and moreover, the satellite travels a certain distance along the orbit during the pulse round-trip
time between the antenna and the ground. However, in a simplified framework of the start-stop approxima-
tion those effects are disregarded. Instead, we assume that the pulse is emitted and the scattered response
received while the antenna is at standstill at one and the same position, after which it moves to its next send-
ing/receiving position along the orbit. This assumption has been used extensively in the SAR literature as
it renders the corresponding analysis much easier. A full justification for the use of start-stop approximation
for spaceborne SAR imaging can be found in [50].

2.3.1 Non-dispersive propagation

Following [5], we first reproduce the derivation of the generalized ambiguity function for the case of un-
obstructed propagation with the speed c. In this case, the field is governed by the standard d’Alembert
equation, which is obtained from the Klein-Gordon equation (2.8) by dropping the last term, i.e., by setting
ωpe = 0. As indicated in Section 2.2, all images are assumed two-dimensional with range and azimuth (i.e.,
cross-range) being the coordinates, and the elevation of the target above the Earth’s surface is not taken
into account. This applies to the analysis of both non-dispersive and dispersive cases.

Suppose that the antenna is a motionless point source located at x ∈ R3. Then, the propagating field
due to the emitted chirp (2.18) is given by the standard retarded potential of the d’Alembert operator:

ϕ(t, z ) =
1

4π

P (t− |z − x |/c)
|z − x |

. (2.21)

Let us assume that the imaged terrain, which is also motionless, is characterized by the variable refraction
index n = n(z ). Under the first Born approximation [67, Sec. 13.1.4], which is elaborated on in Section 4.1.2
and Appendix M, scattering is linearized so that the terrain is interpreted as a secondary waves’ source due
to the incident field ϕ(t, z ) of (2.21):

1− n2(z )

c2
∂2ϕ

∂t2
def
= ν(z )

∂2ϕ

∂t2
,

and each point z of the target is considered a source of the scattered field with intensity

ν(z )
∂2ϕ(t, z )

∂t2
≈ −ω2

0ν(z )ϕ(t, z ). (2.22)

3When this direction is normal to the flight track, the imaging is referred to as broadside.
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In Chapter 4 we extend the consideration of specular reflection to the backscattering, potentially bringing
in some issues which will be part of a future study. The scattered field at the location x of the antenna and
the moment of time t is given by the Kirchhoff integral, as derived in [5]:

ψ(t,x ) =

∫∫∫ ∫
δ (t− τ − |x − z |/c)

4π|x − z |
ν(z )

∂2(ϕ+ ψ)

∂t2
(τ, z )dτdz

(Born approximation) ≈
∫∫∫ ∫

δ (t− τ − |x − z |/c)
4π|x − z |

ν(z )
∂2(ϕ)

∂t2
(τ, z )dτdz

(using δ-function in

∫
. . . dτ) =

1

4π

∫∫∫
ν(z )

|x − z |
∂2ϕ

∂t2
(t− |x − z |/c, z ) dz .

(2.23)

As the amplitude A(t) in (2.18) is slowly varying, it can be left out when differentiating the incident field
(2.21) for substitution into (2.23), which yields:

∂2ϕ

∂t2
(t, z ) ≈ −ω

2
0

4π

P (t− |z − x |/c)
|z − x |

. (2.24)

Consequently,

ψ(t,x ) ≈
∫∫∫

ν̃(x , z )P (t− 2|x − z |/c) dz

=

∫∫∫
ν̃(x , z )A (t− 2|x − z |/c) eiω0(t−2|x−z |/c)dz ,

(2.25)

where

ν̃(x , z ) = − ω2
0

16π2

ν(z )

|x − z |2
. (2.26)

According to (2.25), the scattered field ψ(t,x ) can be interpreted as a result of application of a Fourier
integral operator (FIO) to the ground reflectivity function

ν(z ) =
1− n2(z )

c2
, (2.27)

see, e.g., [6, 68–70]. The FIO is approximately inverted by applying a matched filter to ψ and accumulating
the information due to multiple interrogating pulses (2.18) emitted from and received by the antenna at
different locations on the orbit. This procedure is similar to application of the adjoint operator, which would
have coincided with the true inverse if the mapping (2.25) was a standard Fourier transform.

The matched filter is defined as follows. Assume that there is a point scatterer at the reference location
y , then the resulting field at (t,x ) is obtained by substituting ν(z ) = δ(z − y) into formula (2.25):

ψ1(t,x ) = − ω2
0

16π2

P (t− 2|x − y |/c)
|x − y |2

. (2.28)

The filter is essentially a complex conjugate of ψ1 given by (2.28); for simplicity, the constant factor
−ω2

0/16π2, as well the entire denominator, which is a slowly varying function (compared to the fast os-
cillation eiω0t), are disregarded. What remains is merely P (t− 2|x − y |/c), where the overbar denotes
complex conjugation. The idea of building the filter this way, i.e., the idea of matching, is to have the large
phase cancel in the exponent, see formula (2.18). The application of this filter yields an image from a single
chirp:

I(y) =

∫
χ

P (t− 2|x − y |/c)ψ(t,x )dt (2.29)

=

∫∫∫ ∫
χ

P (t− 2|x − y |/c)P (t− 2|x − z |/c)dt︸ ︷︷ ︸
W (y ,z )

ν̃(x , z )dz .
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where we have changed the order of integration after substituting expression (2.25) for ψ(t,x ). The interior
integral W (y , z ) in formula (2.29) is called the point spread function, see [5,6], and its limits are determined
by the indicator function(s) χτ under the integral, see (2.18) and (2.19). Up to a slowly varying denominator,
the point spread function W (y , z ) yields a single-chirp image of the point scatterer located at z , i.e., it is
the field due to a unit magnitude delta-function at z processed with the matched filter P ( · ).

Let us consider a sequence of emitting/receiving times and locations (tn,xn). For each n, we build the
point spread function following (2.29):

Wn(y , z ) =

∫
χ

P (t− tn − 2|xn − y |/c)P (t− tn − 2|xn − z |/c)dt (2.30)

=

∫
χ

P (uny )P (unz )dt,

where the notation in the second line is used below in Chapter 3. The generalized ambiguity function of
a SAR system takes into account the information from multiple interrogating pulses by summing up the
corresponding contributions (2.30):

W (y , z ) =
∑
n

ϑ(z ,xn)Wn(y , z ). (2.31)

The factor ϑ(z ,xn) under the sum in (2.31) determines the range of summation; it may come from the
directivity pattern of the antenna. If so, the quantity ϑ(z ,xn) can be approximated as follows:

ϑ(z ,xn) =

{
1, if the target z is in the beam emitted from xn,

0, otherwise.
(2.32a)

Often, the synthetic aperture is smaller than this, though, due to technical limitations.
The antenna of longitudinal dimension L emits a beam of angular width of about 2λ/L provided that the

carrier wavelength λ = 2πc/ω0 is much shorter than L. Consequently, the longitudinal size of the antenna
footprint on the ground in the case of broadside imaging is

R tan
λ

L
≈ Rλ

L
> LSA, (2.32b)

where R is the distance from the location of the antenna xn to the center of the footprint. Let the subscript
“1” denote the coordinate along the flight track (orbit), and ∆x1 be the distance along the orbit between
the successive emissions of pulses. We can also take z1 = 0 with no loss of generality. Then, we have

−LSA2 ≤ xn1 ≤ LSA
2 , or −N2 ≤ n ≤ N

2 , where N =
[
LSA
∆x1

]
6
[

2λR
∆x1L

]
, see (2.32b), and [·] denotes the integer

part. Consequently, we recast (2.30), (2.31), and (2.32a) as

W (y , z ) =

N/2∑
−N/2

∫
χ

A(t− tn − 2|y − xn|/c)e2iω0|y−xn|/c

×A(t− tn − 2|z − xn|/c)e−2iω0|z−xn|/cdt.

(2.33)

Next, we change the integration variable from t to t − tn in each term of the sum (2.33) and realize that
neither A(t− 2|y − xn|/c) nor A(t−2|z −xn|/c) depends on n explicitly, except for the dependence via xn.
The latter is weak, because for large R both |y − xn| and |z − xn| are slowly varying functions of xn, and
they appear as arguments of another slowly varying function, A. Hence, the factors Ā and A can be taken
out of the sum (2.33), and xn inside A( · ) and A( · ) can be replaced by x 0 for definiteness, which yields:

W (y , z ) ≈
(∫

χ

A(t− 2|y − x 0|/c)A(t− 2|z − x 0|/c)dt︸ ︷︷ ︸
WR(y ,z )

)( N/2∑
−N/2

e2iω0(|y−xn|/c−|z−xn|/c)

︸ ︷︷ ︸
WA(y ,z )

)
. (2.34)
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Hence, the generalized ambiguity function gets approximately split into the product of the range factor:

WR(y , z ) =

∫
χ

A(t− 2|y − x 0|/c)A(t− 2|z − x 0|/c)dt (2.35)

and the azimuthal factor:

WA(y , z ) =

N/2∑
n=−N/2

e2iω0(|y−xn|/c−|z−xn|/c). (2.36)

These control the range and azimuthal resolution of the radar,4 respectively, see [5, 6], for the case of an
unobstructed propagation between the orbit and the ground. For a more complete argument and analysis
of the error introduced with this approximation, see Appendix A. The actual calculation of the range and
azimuthal factors of the GAF (2.35) and (2.36) is also done in Appendix A. In particular, the azimuthal
factor (2.36) evaluates to

WA(y , z ) ≈ eiΦ0N sinc
(
π
y1

∆A

)
,

where Φ0 = 2
ω0(R0

y −R0
z )

c
and ∆A =

πRc

ω0LSA
.

(2.37)

The quantity ∆A in (2.37) is the azimuthal resolution. The sinc function in (2.37) defines the shape of
the GAF in the azimuthal direction. While azimuthal resolution is determined by the width of synthetic
aperture, the range resolution depends on the properties of the interrogating pulse, i.e., P (t). The analysis
for chirp waveforms is given in Section 2.4.1 and Appendix A.

Remark. The quantity eiΦ0 in WA, see (2.37), is a factor of magnitude one in front of the sum. It may
not have received proper attention in the earlier accounts of the SAR ambiguity theory, including [8] and
those of our own [1, 3]. This factor rapidly oscillates in range. While an inconvenience at a first glance,
it actually helps redefine the ground reflectivity function so that to enable backscattering via the Bragg
mechanism.5 This is done by means of a windowed Fourier transform (WFT) on an intermediate scale [71]
(much longer than the carrier wavelength yet much shorter than the resolution). In doing so, the geometrical
spreading of spherical waves, which is accounted for by the denominator in formula (2.26), can be included
into the definition of the ground reflectivity prior to applying the WFT. Indeed, for x within a given
synthetic aperture, the denominator of (2.26) varies slowly and produces only insignificant changes in the
signal amplitude. Therefore, for the rest of the report we will omit the rapidly oscillating factor eiΦ0 in
(2.37) and disregard the dependence of ν̃ on x . This is equivalent to assuming ahead of time that ν̃(z ) has
already been transformed, and needs to be interpreted as the local backscattering coefficient at the target
rather than the plain variation of the refraction index, as in (2.27).

The generalized ambiguity function (2.34) is the image of a delta-type scatterer. Hence, if we could make
it equal to a delta-function as well, W (y , z ) = δ(y−z ), then the radar would have had perfect resolution. In
reality this is never achieved, and instead W (y , z ) has a peak of finite height and finite width as the reference
point y approaches the target z . The sharper (i.e., the narrower) this peak the better the resolution, because
two sharper peaks can be told apart if they are closer.

2.3.2 Dispersive propagation in the homogeneous medium

In the case of propagation through the ionosphere, the shape of the pulse changes in time and space because
of the dispersion. The simplest case to analyze is that of a homogeneous ionosphere; a detailed analysis
(based on the Fourier transform and linearization of the dispersion relation around the carrier frequency) is

4Resolution is a capability of the radar to distinguish between two different targets located a certain distance apart.
5Allowing for backscattering at the target is critical for the analysis of a monostatic SAR. Yet formulae (2.25), (2.26), (2.27)

show some physical inconsistency as they may yield non-zero backscattering even where it does not exist, e.g., for the scattering
off a half-space with ν(z ) = const, which is known to be specular.
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provided in Appendix B. The form of the propagating pulse emitted by the antenna at x is given by equation
(B.19) [cf. formula (2.21)]:

ϕ(t, z ) =
A′(t− |z − x |/vgr(ω0))

4π|z − x |
eiω0(t−|z−x |/vph(ω0)),

where A′(t) = χτ ′(t)e
iα′t2 ,

(2.38)

or more compactly as

ϕ(t, z ) =
1

4π

P ′ (x , z , ω0, t)

|z − x |
, (2.39)

where

P ′(x , z , ω0, t) = A′
(
t− |z − x |

vgr (ω0)

)
e
iω0

(
t− |z−x|

vph(ω0)

)
. (2.40)

The variables τ ′ and α′ are the new chirp duration and rate given by equations (B.17) and (B.18), respectively:

τ ′ = τ − δτ = τ − |z − x |
c

ω2
pe

ω2
0

B

ω0
, (2.41)

and

α′ = α+ δα = α+
|z − x |

2c

ω2
pe

ω3
0

B2

τ2
= α+

δτ

2

B

τ2
=
B

2τ

(
1 +

δτ

τ

)
. (2.42)

According to (2.41) and (2.42), the longer the distance |z − x | that the pulse travels, the more it gets
compressed (τ ′ becomes shorter) and the more its rate increases (α′ becomes larger). We also emphasize
that as formula (2.38) indicates, the chirp itself, i.e., its slowly varying envelope A′, which represents energy
distribution in the pulse, travels with the group velocity vgr(ω0) that corresponds to the center carrier
frequency ω0. For the high frequency case that we are interested in, i.e., ω0 � ωpe, the group velocity (2.6)
can also be linearized:

vgr = vgr(ω) ≈ c

(
1− 1

2

ω2
pe

c2k2

)
= c

(
1− 1

2

ω2
pe

ω2 − ω2
pe

)
≈ c

(
1− 1

2

ω2
pe

ω2

)
. (2.43)

At the same time, the carrier phase travels with the corresponding phase velocity vph(ω0) and can also be
linearized:

vph = vph(ω) ≈ c

(
1 +

1

2

ω2
pe

c2k2

)
= c

(
1 +

1

2

ω2
pe

ω2 − ω2
pe

)
≈ c

(
1 +

1

2

ω2
pe

ω2

)
. (2.44)

Using the notions of the group and phase velocity (2.43) and (2.44), we can introduce the group and phase
travel times, respectively, in the homogeneous ionosphere:

Tgr(x , z , ω) =
|x − z |
vgr(ω)

and Tph(x , z , ω) =
|x − z |
vph(ω)

, (2.45)

and recast formula (2.38) as follows:

ϕ(t, z ) =
A′(t− Tgr(x , z , ω0))

4π|z − x |
eiω0(t−Tph(x ,z ,ω0)). (2.46)

It is important to point out that the group velocity vgr of (2.43) is slower than the speed of light c. However,
the phase velocity vph (2.44) is faster than the speed of light c. Hence, if we introduce the neutral (non-
dispersive) travel time T = T (x , z ) = |x − z |/c, then, according to (2.43) and (2.44), for the group and
phase travel time we can write:

Tgr(x , z , ω) = T (x , z ) + ∆T and Tph(x , z , ω) = T (x , z )−∆T,

where ∆T = ∆T (x , z , ω) =
|x − z |

c

1

2

ω2
pe

ω2
.

(2.47)



18 CHAPTER 2. SAR IN AN ISOTROPIC FRAMEWORK

In other words, the group delay and the phase advance in formula (2.46) are equal to one another. Given
(2.47), we can recast formula (2.41) for the pulse contraction as follows:

δτ = 2∆T (x , z , ω0)
B

ω0
. (2.48)

2.3.3 Dispersive propagation in the inhomogeneous medium

In the actual ionosphere, the electron number density Ne is not constant, and this is going to affect the
propagation times (2.45). For the current analysis, we will assume that the mean electron number density
〈Ne〉 depends on the altitude above the Earth’s surface, but does not depend on the horizontal coordinates. A
typical dependence of the mean electron number density on the altitude h is non-monotonic. The maximum is
reached in the F-layer somewhere between 200km and 300km above the Earth’s surface, and the characteristic
scale h0 of the variations of 〈Ne〉 is on the order of tens of kilometers, see [7, Ch. VI]. Clearly, h0 � λ, where
λ is the wavelength, which suggests that we can use the approximation of geometrical optics to analyze the
propagation of SAR pulses in the inhomogeneous ionosphere.

We should remember, however, that the total electron number density Ne also has a stochastic component
µ(x ), see formula (2.9). It depends on all spatial coordinates, and can be interpreted as a quasi-homogeneous
random field. To justify the use of geometrical optics for the study of pulse propagation through the turbulent
ionosphere, the wavelength λ must be much shorter than the characteristic scale of turbulent inhomogeneities.
If the latter is taken as r0 (the outer scale of turbulence), the constraint λ � r0 is obviously met. There
is, however, a more subtle criterion for applicability of the geometrical optics. The characteristic scale of
inhomogeneities must be much longer than the size of the first Fresnel zone

√
λRz , where Rz = |z −x | is the

propagation distance between the antenna and the target. The quantity
√
λRz comes to 1km for λ = 1m

and Rz = 1000km, which is roughly r0 according to [43] or 1
10r0 according to [48]. Technically speaking, this

makes the geometrical optics a borderline approximation for the class of problems we are considering. It is
known however, that there are fewer shorter scale inhomogeneities in the spectrum of ionospheric turbulence
than longer scale inhomogeneities, which still leaves the main conclusions of geometrical optics valid even
outside its formal applicability range, see [46, Ch. I].

The expressions for travel times in the inhomogeneous ionosphere that replace formulae (2.45) are derived
in Appendix C for the deterministic case and in Appendix D for the stochastic case. Further analyzing the
case of an inhomogeneous dispersive ionosphere, where the Langmuir frequency ωpe depends on the altitude,
we see that while the form of the propagating signal (2.38), (2.40) in this case does not change, the travel
times become [cf. formula (2.45)]

Tgr(x , z , ω0) =
|x − z |
v̄gr(ω0)

and Tph(x , z , ω0) =
|x − z |
v̄ph(ω0)

. (2.49)

The modified phase and group velocities v̄ph and v̄gr in (2.49) are [cf. formulae (2.44) and (2.43)]

v̄ph(ω0) = c

(
1 +

1

2

ω̄2
pe

ω2
0

)
and v̄gr(ω0) = c

(
1− 1

2

ω̄2
pe

ω2
0

)
, (2.50)

where ω̄2
pe is the square of the Langmuir frequency averaged over the straightened signal path between the

antenna and the target:

ω̄2
pe =

1

|x − z |

∫ x

z

ω2
pe(s)ds ≡ 1

Rz

∫ Rz

0

ω2
pe(s)ds. (2.51)

The quantity ω̄2
pe of (2.51) also helps re-define the new chirp duration and rate for the stratified ionosphere

[cf. formulae (2.41) and (2.42)]:

τ ′ = τ − δτ = τ − |x − z |
c

ω̄2
pe

ω2
0

B

ω0
and α′ = α+ δα =

B

2τ

(
1 +

δτ

τ

)
. (2.52)

Note that in integral (2.51), s is the distance along the straight line connecting z and x . In the case where
the electron number density depends only on the altitude h: Ne = Ne(h), integral (2.51) reduces to (see
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Figure 1.1):

ω̄2
pe =

1

|x − z |

∫ H

0

ω2
pe(h)

dh

cos θ
=

1

H

∫ H

0

ω2
pe(h)dh =

4πe2

me

NH
H

, (2.53)

where H is the orbit altitude and

NH
def
=

∫ H

0

Ne(h)dh (2.54)

is the total electron content (TEC) in the ionosphere.6 A more realistic case, where the ionosphere has a
horizontal inhomogeneity as well, is analyzed in Section 2.5, whereas the ionospheric turbulence is accounted
for in Section 2.10.

In addition to temporal dispersion, the propagation of radio waves in the ionosphere may be subject to
Ohmic losses. In Appendix E we show that in the case of a lossy ionosphere, the propagating chirp (2.18)
still has the form (2.38), but instead of (2.40) the numerator is given by [see formula (E.4)]

P ′(x , z , ω0, t) = A′(t− Tgr(x , z , ω0))eiω0(t−Tph(x ,z ,ω0))e
− 1

2
|x−z |
c

νeω
2
pe

ω2
0 , (2.55)

where νe is the effective frequency of the particle collisions in the ionosphere [7]. For the typical parameters
presented in Table 1.1, including |x −z | ∼ R, the last exponential factor in (2.55) evaluates to e−0.15 ≈ 0.86,
which means that the one-way signal attenuation due to the Ohmic losses in the ionosphere is about 14%.
While not negligible by itself, this attenuation affects only the amplitude of the propagating chirp and does
not affect its phase. Therefore, we will not be taking the Ohmic losses into account hereafter [as we effectively
do not take into account the geometric attenuation, i.e., the denominator in formula (2.22)], and will always
be using the ionospheric propagator in the form (2.38), (2.40) rather than (2.38), (2.55).

Neglecting the turbulence for now (see Section 2.10), we can write (2.49) in a way that corresponds to
(C.20) and (C.21):

Tgr(x , z , ω) =
Rz

c

[
1 +

1

2

4πe2

meω2

NH
H

]
, (2.56a)

Tph(x , z , ω) =
Rz

c

[
1− 1

2

4πe2

meω2

NH
H

]
. (2.56b)

Similarly to (2.47), we can also write:

Tgr(x , z , ω) = T (x , z ) + ∆T and Tph(x , z , ω) = T (x , z )−∆T,

where T (x , z ) =
Rz

c
and ∆T = ∆T (x , z , ω) =

Rz

c

1

2

4πe2

meω2
N ,

(2.57)

where we introduce the notation

N def
=

NH
H

. (2.58)

Given the travel times (2.57), we can evaluate the contraction of the pulse on its way between the antenna
x and the target z using formula (2.48):

δτ = 2∆T (x , z , ω0)
B

ω0
=
Rz

c

4πe2

meω2
0

B

ω0
N . (2.59)

Finally, we can modify the generalized ambiguity function derived in Section 2.3.1, see formula (2.34),
by substituting the actual travel times (2.56) instead of the unobstructed travel time |z − x |/c into those
factors that correspond to the received signal. According to the form (2.46) of the propagating pulse, the
group travel time Tgr(x

0, z , ω0) of (2.56a) shall be substituted into WR(y , z ) and the phase travel time

6In many ionospheric studies, the upper integration limit in (D.8) is formally taken as ∞.
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Tph(xn, z , ω0) of (2.56b) shall be substituted into WA(y , z ). Then, instead of formulae (2.35) and (2.36) we
have:

W ′R(y , z ) =

∫
χ

A(t− 2|y − x 0|/c)A′2δ(t− 2Tgr(x
0, z , ω0))dt (2.60)

and

W ′A(y , z ) =

N/2∑
n=−N/2

e2iω0(|y−xn|/c−Tph(xn,z ,ω0)). (2.61)

Similarly, for the scattered field received by the antenna, we can replace (2.25) by

ψ(t,x ) ≈
∫∫∫

ν̃(x , z )A′2δ(t− 2Tgr(x , z , ω0))eiω0(t−2Tph(x ,z ,ω0))dz . (2.62)

The subscript 2δ in formulae (2.60) and (2.62) indicates that the round trip pulse contraction is twice the
δτ of (2.59).

We emphasize that in formulae (2.60) and (2.61) the factors that correspond to the actual field received
by the antenna take into account the dispersion of radio waves in the ionosphere. However, the factors that
represent the matched filter remain the same as in the non-dispersive case. This creates a mismatch, and as
it will be shown, it is precisely this mismatch that is responsible for the deterioration of the image.

2.4 Radar resolution and ionospheric distortions of SAR images

2.4.1 Range resolution

Expression (2.60) for the range ambiguity function, accurate to a constant factor, is given by the following
integral:

W ′R(y , z ) ∝
∫ min{τ/2+2Ry/c, τ

′′/2+2Tgr(x
0,z ,ω0)}

max{−τ/2+2Ry/c,−τ ′′/2+2Tgr(x0,z ,ω0)}
ei(α

′′−α)t2e4i(αRy/c−α′′Tgr(x
0,z ,ω0))tdt, (2.63)

where [cf. formula (2.52)]

Ry = |x 0 − y |, τ ′′ = τ − 2δτ, and α′′ = α+ 2δα =
B

2τ

(
1 +

2δτ

τ

)
. (2.64)

Changing the integration variable in (2.63) to u = t−
(Ry

c +Tgr(x
0, z , ω0)

)
, removing the higher order terms,

and denoting

a = α′′ − α and b = 2(α+ α′′)(Ry/c− Tgr(x
0, z , ω0)), (2.65)

we can convert integral (2.63) to

w(a, b) =

∫ τ/2

−τ/2
eiau

2+ibudu. (2.66)

Note that the exact integration limits are approximated by simpler expressions in (2.66), which introduces
a small relative error ∼ δτ

τ . A comprehensive analysis can be found in Appendix F, where we consider all
possible scenarios of how the intervals χτ (t − 2|y − x 0|/c) and χτ ′′(t − 2Tgr(x

0, z , ω0)) can be positioned
with respect to one another.

Integrals of type (2.66) commonly appear in the analysis of the radar ambiguity functions and their
properties [72,73]. The quadratic phase error (QPE) for (2.66) is defined as the maximum absolute value of
the quadratic term in the exponent (see, e.g., [73, Chapter 3.5] or [72, Chapter 2.6]):

φq = |a|
(τ

2

)2

. (2.67)
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The QPE characterizes the mismatch between the chirp rates in the direct (2.62) and inverse (2.29) operators.
If the QPE is small, then w of (2.66) can be represented as

w(a, b) ≈ w0(b) + w1(a, b), (2.68)

where

w0(b) = τ sinc
(bτ

2

)
≡ τ sin(bτ/2)

bτ/2
and |w1| � |w0|. (2.69)

With no dispersion at all, formula (2.65) yields a = 0 and b = 4α(Ry − Rz )/c, because Tgr = Rz/c. In
this case, the semi-width of the main lobe of w0(b), which is given by the conditions bτ

2 = ±π, determines
the undistorted radar resolution in range, ∆R = πc

B , see [5], while the sidelobes of w0 determine the image
contrast.

In the dispersive case, the term w0 in (2.68) represents the effect of the filter with the group delay of
the signal taken into account, but with no rate mismatch, i.e., no QPE. Substituting b of (2.65) into w0 of
(2.69) and keeping only the first term on the right-hand side of (2.68), we approximate (2.63) as follows:

W ′R(y , z ) ∝ τ sinc
(
[(α′′ + α)Ry/c− (α′′ + α)Tgr(x

0, z , ω0)]τ
)
. (2.70)

The range resolution ∆R is also given by the semi-width of the main lobe of the sinc in (2.70). Setting
(α′′+α)∆Rτ

c = π, we derive with the help of (2.64):

∆R =
πc

B

(
1− δτ

τ

)
. (2.71)

Formula (2.71) yields roughly 19m for the values of the parameters listed in Table 1.1. The term δτ
τ is

formally kept in (2.71) only because it comes from the analysis of (2.70) with no simplifications. Otherwise,
this term is small, about 0.15%, and of the same order as the terms dropped when simplifying the integration
limits in (2.66). Thus, it can be neglected, and the range resolution in the dispersive case remains practically
unchanged.

The term w1 in (2.68) leads to the broadening of the main lobe of w(a, b) and increase of its sidelobes, both
of which add to the image blurring. Quantitatively, the role of w1 has been estimated in [8, Appendix C].7

Specifically, it has been shown8 that at the edge of the main lobe we have |w| 6= 0 due to the presence of w1,
so that

1

max |w|
|w| bτ

2 =π ≈
|w1| bτ

2 =π

|w0| bτ
2 =0

≈ aτ2

2π2
=

2

π2
φq, (2.72)

where the QPE φq is defined by (2.67) and should be small for (2.72) to hold. A non-zero value in (2.72)
suggests that the image is smeared, because the main lobe is not so well defined compared to the case where
|w| bτ

2 =π = 0. For the typical parameters given in Table 1.1, the extent of the smearing in the sense of (2.72)

is ∼ 40%, assuming that for the definition of δτ in (2.52) we take |x − z | ∼ R. An alternative measure for
image imperfections due to the QPE is called the integrated side lobe ratio (ISLR). The ISLR is defined as
a ratio of the power (i.e., integral of |w|2) in the sidelobes to that in the main lobe, see [73, Section 2.8]. It
is usually expressed in decibels, and can be calculated numerically. The increase of ISLR that corresponds
to the data in Table 1.1 is ∼ 1.8dB.

The ionosphere also causes a displacement of the image. Formula (2.69) indicates that w0 attains its
maximum at b = 0. In the non-dispersive case, we have Tgr(x

0, z , ω0) = Rz/c where Rz = |x 0 − z |, and
according to (2.65), b = 0 for Ry = Rz . In other words, the sinc reaches its maximum value precisely
when the reference location y and the target z are at the same distance away from the orbit in the normal
direction. In the dispersive case though, b = 0 when Ry (z ) = cTgr(x

0, z , ω0), where Tgr is given by (2.49).

7The effect of QPE can, to some degree, be controlled by introducing the weight functions into integral (2.29), see, e.g., [73];
we do not consider this approach here.

8At this point we should note that there are some arithmetic errors in that appendix, but the end result of the analysis is
the same.
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This is not equivalent to Ry = Rz , and hence the image of a point scatterer at z will be displaced in range
with respect to its true position. The displacement is given by

SR
def
= Ry (z )−Rz = cTgr(x

0, z , ω0)−Rz = Rz
1

ω2
0

4πe2

2me

NH
H

=
1

2
Rz

ω̄2
pe

ω2
0

. (2.73)

For the parameters in Table 1.1, formula (2.73) yields approximately 450m, assuming that Rz ≈ R. The
origin of this displacement is the group delay, i.e., the mismatch between the actual propagation velocity v̄gr

of (2.50), which is used in the direct operator (2.62), and the speed of light in the inverse operator (2.29).
Although the displacement of the image in range is a distortion per se, it appears of key importance for the
reconstruction of the ionospheric TEC by means of dual-carrier probing (see Section 2.8).

2.4.2 Azimuthal resolution

To analyze the azimuthal factor of the GAF, we first introduce the notation

Ψn =
|y − xn| − cTph(xn, z , ω0)

R
(2.74)

so that the sum (2.61) is recast as

W ′A(y , z ) =

N/2∑
n=−N/2

e
2iω0R
c Ψn . (2.75)

When calculating the distances in (2.74), we will use the subscripts “1” and “2” to denote the horizontal
coordinates along the orbit (azimuth) and across the orbit (range), respectively, leaving the index “3” for
the altitude, so that for the points on the orbit we will have x = (x1, 0, H). For the target z = (z1, z2, 0)
we will assume with no loss of generality that z1 = 0, see Figure 1.1; we also take y2 = z2 when analyzing
azimuthal resolution. Then, we can linearize the travel distances:

Rz = |z − x | =
√
R2 + (z1 − x1)2 ≈ R

(
1 +

1

2

x2
1

R2

)
,

Ry = |y − x | =
√
R2 + (y1 − x1)2 ≈ R

(
1 +

1

2

(y1 − x1)2

R2

)
,

(2.76)

because |xn1 | � R and |y1 − xn1 | � R, where R =
√
H2 + z2

2 . Substituting (2.76) into (2.74), we get

Ψn =
1

2

y2
1

R2
− y1x

n
1

R2
+

1

2

ω̄2
pe

ω2
0

+
ω̄2

pe

ω2
0

(xn1 )2

4R2
. (2.77)

For the azimuthal coordinate x1 in formula (2.77) we can write: xn1 = n ·∆x1, where ∆x1 is the distance that
the satellite travels along the orbit between the successive emission of pulses: ∆x1 = vSAT/fp. Introducing

â =
ω0(∆x1)2

2Rc

ω̄2
pe

ω2
0

and b̂ =
2ω0y1∆x1

Rc
, (2.78)

and ignoring the proportionality constant that results from the first and third terms in (2.77), we can
approximate the sum (2.75) by the integral:

W ′A(y1, 0)
def
= W ′A(y , z )

∣∣∣
z1=0,y2=z2

=

N/2∑
n=−N/2

eiân
2−ib̂n ≈

∫ N/2

−N/2
eiân

2−ib̂ndu. (2.79)

The integral in (2.79) is of the type (2.66). Thus, the calculation of the azimuthal w0 is equivalent to keeping
only the first term on the right-hand side of (2.77) for the sum (2.75):

W ′A(y1, 0) ≈
N/2∑

n=−N/2

e−
2iω0
c

y1x
n
1

R ≈ N sinc
ω0y1∆x1N

Rc
. (2.80)
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The semi-width of the main lobe of the sinc in (2.80) yields the azimuthal resolution:

∆A =
1

2

λ0R

LSA
, (2.81)

which is another way of writing what appears in (2.37). It appears approximately equal to 10m for the
typical parameters given in Table 1.1.

The azimuthal w1 is due to â of (2.78), i.e., to the second term on the right-hand side of (2.77). This
second term accounts for the difference between the phase velocity in the dispersive propagator (2.40),
(2.49) and the speed of light in the non-dispersive filter in (2.29). Similarly to (2.67), the expression for the
azimuthal QPE is

φqA =
âN2

4
=

1

2

ω0

Rc

ω̄2
pe

ω2
0

1

4
(N∆x1)2 =

1

8

ω0L
2
SA

Rc

ω̄2
pe

ω2
0

, (2.82)

and the same argument that leads to equation (2.72) yields the deterioration of the GAF contrast of ap-
proximately 35% for the the typical parameters given in Table 1.1. Note though that such a substantial
deterioration implies that the main lobe of the sinc absorbs the first sidelobe, the resolution drops, and the
measure of image defects based on formula (2.72) essentially loses its original meaning. On the other hand,
the ISLR still provides an adequate measure, and the corresponding increase is about 4dB.

2.5 Azimuthal displacement due to horizontal variation of the
ionosphere

In Section 2.4, we have assumed that the electron number density does not depend on the horizontal co-
ordinates. Then, the only characteristic of the ionospheric plasma that enters into the expression for the
propagator (2.38) is the constant TEC given by (2.54).

In order to account for the horizontally inhomogeneous ionosphere, we will let the electron number
density Ne depend not only on the altitude h but also on the azimuthal coordinate ξ1. In doing so, we will
assume that the dependence is predominantly linear and truncate the Taylor expansion of Ne in the direction
ξ1 after the second term:

Ne(ξ1, h) ≈ Ne(0, h) + ξ1
∂Ne

∂ξ1
(0, h), where |ξ1| � R. (2.83)

Following Appendix C, for ω2 � ω2
pe (see Table 1.1) we can calculate the phase travel time by integrating

the reciprocal phase velocity of (2.44) along the straight line connecting x and z (i.e., ignoring the ray
curvature) [cf. formulae (2.51) and (2.53)]:

Tph(x , z , ω) =

∫ Rz

0

ds

vph(s)
=

1

cos θ

∫ H

0

dh

vph(ξ1(h), h)

≈ Rz

c
− 1

c cos θ

∫ H

0

1

2

ω2
pe(ξ1(h), h)

ω2
dh.

(2.84)

Here, ξ1(h) is the azimuthal coordinate of the point on the line between x and z that has altitude h (see
Figure 1.1):

ξ1(h) ≡ ξ1(x , z , h) =
h

H
x1 +

H − h
H

z1 =
h

H
x1, (2.85)

and we again assume z1 = 0. Substituting (2.85) into (2.84), we get:

Tph(x , z , ω) =
Rz

c
− 1

2cω2 cos θ

∫ H

0

(
ω2

pe(0, h) +
x1

H

4πe2

me

∂Ne

∂ξ1
(0, h)h

)
dh. (2.86)

Then, using formulae (2.50)–(2.54), we transform expression (2.86) into

Tph(x , z , ω) =
Rz

v̄ph(ω)
− Rz

c

ω̄2
pe

2ω2
Q(x 0, z )x1, (2.87)
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where

Q(x 0, z )
def
=

1

H2

∫ H

0

4πe2

meω̄2
pe

∂Ne

∂ξ1
(0, h)h dh (2.88)

is essentially the first vertical moment of the azimuthal gradient of Ne. The quantities ω̄2
pe and v̄ph(ω) in

formulae (2.87) and (2.88) are evaluated according to (2.53) and (2.50), respectively, for ξ1 = 0, i.e., for
ω2

pe = ω2
pe(0, h), or Ne = Ne(0, h). Substituting (2.88), (2.87), and (2.76) into (2.74), we have [cf. formula

(2.77)]:

Ψn = −y1x
n
1

R2
+
ω̄2

pe

ω2
0

(xn1 )2

4R2
+
ω̄2

pe

2ω2
0

Qx1. (2.89)

With the third term on the right-hand side of (2.89) taken into account, and the second term temporarily
disregarded, we obtain instead of formula (2.80):

W ′A(y1, 0) ≈
N/2∑

n=−N/2

e
− 2iω0

c

(
y1
R −R

ω̄2
pe

2ω2
0
Q
)
xn1 ≈ N sinc

[
ω0

c

(
y1

R
−R

ω̄2
pe

2ω2
0

Q

)
∆x1N

]
.

Consequently, a non-zero value of Q of (2.88), which is due to the azimuthal gradient of Ne, see (2.83),
results in an azimuthal displacement of the entire image by

SA =
1

2

ω̄2
pe

ω2
0

QR2. (2.90)

As in the case of the displacement in range, see formula (2.73), the origin of the azimuthal displacement (2.90)
is a mismatch between the filter in (2.29) and the propagator (2.40). The presence of the azimuthal displace-
ment (2.90) allows us to reconstruct the value of Q by means of the dual-carrier probing (see Section 2.8)
and subsequently use this value to correct the matched filter in (2.29).

The effect of the second term on the right-hand side of (2.89) is exactly the same for the horizontally
inhomogeneous ionosphere as it is for the horizontally homogeneous ionosphere. Namely, the QPE leads to
a deterioration of the GAF contrast, see (2.82).

It is also to be noted that in the literature one sometimes uses a simplified model based on the so-called
phase screens to describe the propagation of radar pulses through the ionosphere, see, e.g., [21, 31,65].

2.6 Dual carrier probing

To remove the mismatches that cause distortions of the image, one needs to correct the filter, i.e., replace
the unobstructed travel times |y −xn|/c by Tgr(x

n,y , ω0) in (2.60) and by Tph(xn,y , ω0) in (2.61), and also
adjust the chirp duration and chirp rate in the filter factor under the integral (2.60). However, unlike in the
received field, which is a physical observable, the correction in the filter must be done theoretically. Therefore,
one needs to know the quantity N , see formulas (2.57) and (2.58), that characterizes the ionosphere. The
availability of N will allow one to calculate the dilation (2.59) and the new chirp rate (2.42), as well as travel
times for any reference location y .

In the literature, many estimates are available for the electron number density and the TEC in the
ionosphere, see, e.g., [7] or [62]. Those estimates, however, can only provide a typical range of values,
especially as the parameters of the ionosphere are known to vary in space and in time. This will not
allow one to correct the filter with a sufficient degree of reliability. More accurate values of the ionospheric
parameters can be obtained with the help of the specialized techniques, such as those described in the papers
surveyed in Chapter 1. It is to be emphasized though that even if the TEC is known accurately, but not for
the exact same state of the ionosphere that corresponds to a given image, it may still be not very useful for
mitigating the image distortions. What is rather needed is an accurate value of N exactly at the time and
place the image is taken. The technique we describe hereafter provides just that.

Namely, we exploit the idea of dual carrier probing as it applies to the determination of N for the given
specific state of the ionosphere. Let us assume that there is an object or feature in the scene that can be
clearly identified on the image. This object does not have to be artificial. It does not have to dominate the
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scene, say, by having the highest reflectivity. Its location does not have to be known ahead of time. It merely
has to be something that can be fairly easily picked out and matched on different images that represent the
same terrain. For example, it can be some landmark, such as a hilltop, a building, a road intersection, etc.

Let ω1 and ω2 be two distinct carrier frequencies, ω1 6= ω2, and let R
(1)
y and R

(2)
y be the corresponding

ranges of the aforementioned object measured by the radar, whereas its true range is Rz (unknown yet).
Then, we can consider the corresponding two equations (2.73) as a system:

R(1)
y = cTgr(x

0, z , ω1),

R(2)
y = cTgr(x

0, z , ω2),
(2.91)

where the group travel time Tgr is given by formula (2.56a). With the data R
(1)
y and R

(2)
y available, system

(2.91) can be solved with respect to the two unknown quantities: the true range Rz and the integral quantity
N that characterizes the plasma.

Let us reintroduce (see (2.51) and (2.58)) the following notation for brevity:

ω̄2
pe =

4πe2

me
N . (2.92)

Using this notation, system (2.91) with the expression for Tgr given by (2.56a) is recast as

R(1)
y =Rz

(
1 +

ω̄2
pe

2ω2
1

)
,

R(2)
y =Rz

(
1 +

ω̄2
pe

2ω2
2

)
.

(2.93)

The range Rz can be eliminated from system (2.93) by dividing the equations by one another. Then, after
simple transformations, we have:

ω̄2
pe =

2ω2
1ω

2
2∆Ry

ω2
2R

(2)
y − ω2

1R
(1)
y

, where ∆Ry ≡ R(1)
y −R(2)

y . (2.94)

Once the frequency ω̄2
pe has been obtained, the actual electron content NH can be determined using

(2.92). Moreover, if there is a need to know the true range Rz of the chosen reference object, it can be easily
found from any of the equations (2.93).

Let us emphasize that formula (2.94) does not degenerate in the sense that its denominator does not turn
into zero. Indeed, if it were equal to zero, then system (2.93) would immediately yield ω1 = ω2. However,

the quantity ω̄2
pe computed according to (2.94) appears sensitive to the errors in the data R

(1)
y and R

(2)
y . A

rigorous analysis of this sensitivity, i.e., of the conditioning [74, Chapter 1] of formula (2.94), can be found
in Appendix G. It shows that the conditioning is only weakly affected by how far the probing frequencies
ω1 and ω2 are chosen from each other. For the most part, ω̄2

pe appears sensitive to errors because there is

a difference between two large numbers that are close to one another (R
(1)
y and R

(2)
y ) in the numerator of

(2.94). The overall conditioning of ω̄2
pe can be improved though by using several reference locations instead

of one. In Appendix G, we are showing that this approach indeed helps reduce the resulting error. But there
is an even better way to reduce the error, image registration, and we look into this in Section 2.8.

It is also to be noted that the idea of using two frequencies for determining the TEC is briefly mentioned
in [17], without analyzing the resulting performance. The authors of [17] suggest however that the two
frequencies be taken from the existing SAR bandwidth. In the context of our approach, we analyze the
split-band technique in Appendix I.

2.7 Correcting the matched filter when the exact TEC is known

Let us recall that the distortions of the SAR image are due to the mismatch between the actual field received
by the radar antenna and the assumptions made about this field when designing the signal processing
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algorithm, i.e., the matched filter. In this section, we assume that we are able to reconstruct the TEC
exactly. Analysis of the case where there is some error in the reconstructed TEC is done in Section 2.9.
Once the quantity NH has been found, one can use formulae (2.56) and accurately evaluate the travel times
Tph(xn,y , ω0) and Tgr(x

n,y , ω0) for any location y . Then, one can also compute the pulse dilation for the
reference point y using formula (2.59), and the new pulse rate according to (2.42). This allows to correct
the matched filter, i.e., to modify its definition in formulae (2.60) and (2.61) by substituting the travel times
that account for the ionospheric dispersion.

2.7.1 Range resolution

With the above correction in place, the range factor of the generalized ambiguity function becomes [cf.
formula (2.63)]:

W ′R(y , z ) =

∫ min{τ ′′(y)/2+2Tgr(y), τ ′′(z )/2+2Tgr(z )}

max{−τ ′′(y)/2+2Tgr(y),−τ ′′(z )/2+2Tgr(z )}
e−iα

′′(y)(t−2Tgr(y))2

eiα
′′(z )(t−2Tgr(z ))2

dt

∝
∫ min{τ ′′(y)/2+2Tgr(y), τ ′′(z )/2+2Tgr(z )}

max{−τ ′′(y)/2+2Tgr(y),−τ ′′(z )/2+2Tgr(z )}
ei(α

′′(z )−α′′(y))t2e4i(α′′(y)Tgr(y)−α′′(z )Tgr(z ))dt,

(2.95)

where we have introduced the abbreviated notation Tgr(z ) = Tgr(x
0, z , ω0). The double primed quantities

τ ′′ and α′′ in formula (2.95) are to be evaluated for the pulse round-trip between the antenna and the target
[cf. formulae (2.52) and (2.42)]:

τ ′′ = τ − 2δτ and α′′ = α+ δτ
B

τ2
=
B

2τ

(
1 +

2δτ

τ

)
, (2.96)

where δτ is given by formula (2.59). For the integral (2.95), we consider the integration limits ∓τ ′′(y)/2 +
2Tgr(y), and, changing the integration variable: u = t− 2Tgr(y), obtain:

W ′R(y , z ) ∝
∫ τ ′′(y)/2

−τ ′′(y)/2

e−iα
′′(y)u2

eiα
′′(z )(u+2Tgr(y)−2Tgr(z ))2

du

∝
∫ τ ′′(y)/2

−τ ′′(y)/2

ei(α
′′(z )−α′′(y))u2

e4iα′′(z )(Tgr(y)−Tgr(z ))udu,

(2.97)

where the constant factors of magnitude one in front of the integrals are dropped.
Following the analysis of Section 2.4, we first disregard the quadratic term ∼ u2 in the exponent under

the integral (2.97), because this term is small. Then, integral (2.97) evaluates to

W ′R(y , z ) ∝ τ ′′(y) sinc[2α′′(z )(Tgr(y)− Tgr(z ))τ ′′(y)]. (2.98)

The range resolution of the radar is defined as the semi-width of the sinc function (2.98) interpreted as a
function of Ry −Rz, and hence can be obtained by setting the argument of the sinc equal to π:

2α′′(z )(Tgr(y)− Tgr(z ))τ ′′(y) = π.

With the help of (2.96), the previous equality transforms into

B

τ

(
1 +

2δτ

τ

)
(Tgr(y)− Tgr(z ))τ

(
1− 2δτ

τ

)
= π. (2.99)

Per our discussion in Appendix F, we can disregard the terms δτ
τ in the expression for resolution and instead

of (2.99) write:
B(Tgr(y)− Tgr(z )) = π. (2.100)

Then, we can use formulae (2.56a) and (2.92), and express the difference between the group travel times in
(2.100) as follows:

Tgr(y)− Tgr(z ) =
Ry −Rz

c

(
1 +

1

2

ω̄2
pe

ω2
0

)
. (2.101)



2.7. CORRECTING THE MATCHED FILTER WHEN THE EXACT TEC IS KNOWN 27

Thus, substituting the result into (2.100), we arrive at the following expression for the range resolution:

∆R = Ry −Rz ≈
πc

B

(
1− 1

2

ω̄2
pe

ω2
0

)
. (2.102)

The resolution given by formula (2.102) is an improvement over the non-corrected case (2.71) because it
is basically as good as the non-dispersive resolution ∆R = πc/B. However, as indicated in Section 2.4.1,
the range resolution of a SAR sensor does not suffer much from the ionospheric dispersion in any event.
Therefore, what is even more important is that when the filter is corrected, the target is no longer shifted
in range from its true position as in formula (2.73). That is because the maximum of the sinc in formula
(2.98) is attained precisely at Ry = Rz .

What is also very important is that the degradation of image sharpness becomes negligible once the filter
has been corrected. To analyze this effect, we bring back the quadratic term in the exponent under the
integral (2.97). First, we recast this integral in the form

W ′R(y , z ) ∝
∫ τ ′′(y)/2

−τ ′′(y)/2

eiγu
2

eiζudu, (2.103)

where

γ = α′′(z )− α′′(y) =
B

τ2
(δτ(y)− δτ(z )) =

B

τ2

2(Ry −Rz)
c

4πe2

meω2
0

B

ω0
N , (2.104)

ζ = 4α′′(z )(Tgr(y)− Tgr(z )), (2.105)

and the quantity N is defined in formula (2.58). The quadratic term in the exponent under the integral
(2.103) is small: |γu2| � 1 for u ∈ [−τ ′′(y)/2, τ ′′(y)/2], and consequently we have:

W ′R(y , z ) ≈
∫ τ ′′(y)/2

−τ ′′(y)/2

(1 + iγu2)eiζudu

= τ ′′ sinc[2α′(z )(Tgr(y)− Tgr(z ))τ ′′] + iγ
4ζτ ′′ cos ζτ

′′

2 + (−8 + ζ2τ ′′
2
) sin ζτ ′′

2

2ζ3
,

(2.106)

where τ ′′ = τ ′′(y). The first term on the right-hand side of (2.106) obviously coincides with (2.98), and the
second term represents a correction. According to (2.104) and (2.105), (2.101), both γ and ζ vanish as Ry

approaches Rz . However, the fraction on the right-hand side of (2.106) remains bounded as ζ → 0 (and
γ → 0). It is, in fact, easy to see that

W ′R(y , z ) ≈ τ ′′ sinc[2α′′(z )(Tgr(y)− Tgr(z ))τ ′′] +
3

16
iγτ ′′

3
. (2.107)

As the first term on the right-hand side of (2.107) is proportional to τ ′′, the relative magnitude of the

correction is about γτ ′′
2

(this is a dimensionless quantity). There is no correction at the central peak of the
sinc, because γ = 0 when Ry = Rz . To quantify the extent to what the image sharpness is affected, we
estimate the correction at the first zero of the sinc. Using formulae (2.104) and (2.96), we obtain:

γτ ′′
2

= B
2(Ry −Rz)

c

4πe2

meω2
0

B

ω0
N
(

1− 2δτ

τ

)2

,

where the value of Ry − Rz shall be taken according to formula (2.102). For the typical values of the
parameters involved, Table 1.1, we have

4πe2

meω2
0

N ≈
ω̄2

pe

ω2
0

∼ 9× 10−4 and
B

ω0
∼ 10−2,

so that altogether we can write:

3

16
γτ ′′

2 ≈ 3π

8

ω̄2
pe

ω2
0

B

ω0

(
1− 1

2

ω̄2
pe

ω2
0

)(
1− 4δτ

τ

)
∼ 3π

4
· 10−5.
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We therefore conclude that the degradation of image contrast in range decreases to approximately 0.003%
as opposed to 20% in the non-corrected case, see formula (2.72). Again, this is assuming that the TEC is
reconstructed exactly.

2.7.2 Azimuthal resolution

Once the matched filter has been corrected, expression (2.61) for the azimuthal component of the generalized
ambiguity function becomes

W ′A(y , z ) =

N/2∑
n=−N/2

e2iω0(Tph(xn,y ,ω0)−Tph(xn,z ,ω0)). (2.108)

Then, using formulae (2.56b) and (2.76), we can transform expression (2.108) into:

W ′A(y , z ) ∝
N/2∑

n=−N/2

e
2iω0
c

[
− y1x

n
1

R

(
1− 1

2
4πe2

meω
2
0
N

)]
, (2.109)

where the constant factor of unit magnitude in front of the sum was dropped. The result is another sinc
function, and it leads to the following estimate of the azimuthal resolution in the case of a non-fluctuating
ionosphere:

2y1 ≈
L

2

(
1 +

1

2

4πe2

meω2
0

N
)

=
L

2

(
1 +

1

2

ω̄2
pe

ω2
0

)
.

This value is only marginally worse than that obtained in the non-dispersive case: 2y1 = L/2. Even more
important, correction of the filter restores the sharpness of the image for the non-fluctuating ionosphere, so
that there is no deterioration like in the non-corrected case, see formula (2.80). The reason is that unlike in
formula (2.75), there is no quadratic term with respect to xn1 in the exponent in the sum (2.109).

We have seen that dual carrier probing can dramatically improve the quality of a SAR image. However,
the analysis in this section neglects one important detail: in practice, the TEC will never be reconstructed

exactly. As seen in Appendix G, formula (2.94) is poorly conditioned. Any errors in R
(1)
y and R

(2)
y will

significantly affect the determined Langmuir frequency ω̄2
pe and thus the determined TEC. A method to

improve the conditioning and accuracy of the TEC reconstruction is proposed in Section 2.8; it is based
on image registration [33]. However, even the most advanced registration techniques carry a certain error,
which, in turn, will affect the computed value of the TEC. In Section 2.9, we analyze the resulting errors
in the corrected matched filter and the residual distortions of the image that occur when the TEC is not
reconstructed exactly.

2.8 Robust evaluation of ionospheric parameters by dual-carrier
probing combined with image registration

In the previous sections, it has been demonstrated how mismatches between the direct and inverse operators
(formulae (2.62) and (2.29), respectively) result in image distortions of various kinds. For a horizontally
homogeneous ionosphere (Section 2.4), these mismatches include a substantial displacement of the entire
image in range, as well as both range and azimuthal smearing. Horizontal inhomogeneity of the ionosphere
(Section 2.5) adds an azimuthal displacement that may sometimes be of the same magnitude as the range
displacement. Our goal is to remove (or reduce) the mismatches and thus reduce the image distortions. The
mismatches originate from the difference between the actual phase and group travel times of radar signals
in the ionosphere [formulae (2.38)–(2.52)] and the expression |x − z |/c in (2.29) that is based on the speed
of light in vacuum. Hence, it is necessary to evaluate the parameters of the ionospheric plasma that appear
in formulae (2.50), (2.53), and (2.87).

The approach to correcting the ionospheric distortions based on dual-carrier probing assumes that at
the first stage, two SAR images of the same area at the same time are acquired using two different carrier
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frequencies and a filter with no correction. Each of the two images will be displaced from the ground
truth, but the magnitude of the displacement will depend on the carrier frequency, see (2.73). In doing so,
the difference between the two values of the displacement allows one to estimate the parameter ω̄2

pe given
by (2.92). This has been demonstrated in section 2.6. The next step is that ω̄2

pe is substituted into formulae
(2.50), which helps determine the phase and group travel times (2.49) and the new chirp rate and length
(2.52). These quantities, in turn, are used to build a new filter P ′ based on (2.40) that would match the
actual signal that propagates through the ionosphere (2.38). The distortions of the image obtained with the
help of the new filter will be reduced or removed. We have seen this in Section 2.7 but there are still more
effects to account for, namely the horizontal inhomogeneity of the ionosphere introduced in Section 2.5.

Following the argument used previously, we assume that there exists a point-like object in the scene that

is imaged at two different slant distances R
(1)
y and R

(2)
y using carrier frequencies ω1 and ω2. Then, a similar

approach to that used in section 2.6 can be used to reconstruct the horizontal inhomogeneity parameter Q
from the measurements of the azimuthal displacement SA on two images. According to (2.90), the azimuthal

coordinates y
(1)
1 and y

(2)
1 of a given object on two images are related to its true azimuthal coordinate z1 by

y
(1)
1 = z1 +

1

2

ω̄2
pe

ω2
1

QR2,

y
(2)
1 = z1 +

1

2

ω̄2
pe

ω2
2

QR2,

which yields

ω̄2
peQR2 =

2ω2
1ω

2
2∆y1

ω2
2 − ω2

1

, where ∆y1 ≡ y(1)
1 − y(2)

1 . (2.110)

Formulae (2.94) and (2.110) allow one to reconstruct the ionospheric parameters ω̄2
pe and Q that are

responsible for the filter mismatch between P in (2.29) and P ′ in (2.40). The deficiencies of this method
include the following:

(i) Formula (2.94) involves a small quantity ∆Ry = R
(1)
y − R

(2)
y defined as a difference of two large

quantities. Hence, this formula is poorly conditioned, i.e., sensitive to errors in the input data R
(1)
y and

R
(2)
y , see [1].

(ii) The method of (2.91)–(2.94) requires having point-like objects in the scene. Yet the initial images built
using the uncorrected filter may be smeared because of the chirp rate mismatches (Section 2.4). With

no sharp objects, the measurements of R
(1)
y and R

(2)
y should use diffuse objects and/or brightness gra-

dients, which reduces the accuracy and further aggravates the problem outlined in item (i). Additional
complication comes from the fact that the extent of smearing depends on the radar frequency, and thus
one and the same object may appear different in two images.

(iii) Expression (2.94) yields a single value of ω̄2
pe, whereas the electron number density may, in fact, vary

over the scale of the image, so that different values of the TEC may be needed for different parts of
the image.

In Appendix G, which follows up on our prior work [1], we address the issue of conditioning of for-

mula (2.94) by exploiting multiple pairs of (R
(1)
y , R

(2)
y ) chosen over the image, so that the result given

by (2.94) is averaged over the set of those pairs. If the values of ω̄2
pe obtained for individual pairs are inter-

preted as independent random variables, then this approach may reduce the total error by a factor of
√
L,

where L is the number of pairs. It, however, puts an even higher demand on the availability of sharp objects
(item (ii)), whereas if the TEC varies over the image (item (iii)), there will be little or no improvement.

In the current section, instead of determining the range values Ry from individual images, we follow the
approach of [3] and propose to calculate the shift between the two images using registration techniques [33].
The key advantage of the registration approach is that it determines the value of ∆Ry directly, as opposed

to computing it as the difference of two much larger values. While there is still a need to know R
(1)
y and R

(2)
y
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individually to calculate the denominator in (2.94), it has been shown in Section 2.6 that it is the quantity
∆Ry in the numerator of (2.94) that is primarily responsible for the poor conditioning of the formula.

A particular registration method that can be used is known as phase correlation [39,40]. It belongs to the
family of area-based image registration techniques [33].9 Consider two functions of a single real argument:
u(x) and v(x) ≡ u(x − s), where s is the unknown shift. Then, for the Fourier transforms of u and v we
have:

û(κ) =

∫ ∞
−∞

u(x)e−iκxdx ⇒ v̂(κ) =

∫ ∞
−∞

u(x− s)e−iκxdx = e−iκsû(κ). (2.111)

Therefore,

δ̃(x)
def
=

∫ ∞
−∞

û∗(κ)v̂(κ)

|û∗(κ)v̂(κ)|
eiκxdκ =

∫ ∞
−∞

e−iκseiκxdκ = 2πδ(x− s), (2.112)

where asterisk (∗) denotes complex conjugation. The idea of phase correlation for the area-based image
registration is to look for the value of x that delivers the maximum to δ̃(x) of (2.112). In the ideal world,
δ̃(x) peaks exactly at s, so the approach immediately yields the shift. Moreover, one can interpret the shift
obtained this way as an independent quantity rather than the difference ∆Ry of two large distances, as in
the original formula (2.94). In the real world, one uses a discrete Fourier transforms instead of both (2.111)
and (2.112). This leads to the usual ambiguities due to the finite size of the image and finite size of the
grid, on which the discrete transform is done, and the result is not a pure δ-function any more. It is rather
a grid function with its maximum at the node closest to x = s, see Appendix H. This brings the accuracy of
determining the shift s to half the grid size, which has a lower bound of half the pixel size. Additional steps
can be taken to improve this accuracy further, and also to mitigate the component of the error due to the
presence of noise, see [75]. Altogether, the error of determining the shift s by phase correlation decreases as
L−1/2, see formula (H.8), where L is the dimension of the discrete Fourier transform.10 It is fundamentally
the same “inverse square root” behavior as appears in the feature-based registration. The advantage of
the area-based approach is that by involving areas without distinct point-like features it helps increase the
effective number of “pairs of the reference points,” and thus improves the accuracy and robustness of the
shift estimation. In practice, the best techniques currently available in the literature report the accuracy of
the area-based image registration of only a few percent of the resolution cell, see [34–38].

We note that the functions u(x) and v(x) in formula (2.111), as well as in Appendix H, represent the
absolute value of the complex image I(y). Correlation of complex images, called coherent cross correlation
in [76], provides a better registration accuracy, but is only possible if frequency bands of the two images
substantially overlap.

In Section 2.9, we show how the accuracy of registration affects the accuracy of TEC reconstruction
by dual-carrier probing. We also analyze the residual distortions of SAR images. When making numerical
estimates, we will assume that the registration accuracy, in both range and azimuthal direction, is 5% of the
corresponding resolution.

2.9 Performance of the matched filter with ionospheric corrections

2.9.1 Implementation of ionospheric corrections into the matched filter

Let us recall that the goal of reconstructing the parameters of the ionosphere ω̄2
pe and Q is to correct

formula (2.29) [as well as formulae (2.30) and (2.31)], i.e., replace the filter P (x ,y , ω0) by the complex
conjugate of P ′(x ,y , ω0) of (2.40), so that the mismatch between the filter and the dispersive propagator
is removed. If ω̄2

pe is known, then P ′ can be obtained by evaluating the travel times Tph(xn,y , ω0) and
Tgr(x

n,y , ω0) with the help of formulae (2.49), (2.50), and also computing corrections to the chirp rate and
duration using (2.52). Furthermore, if Q is known, then an additional correction to the phase travel time is
given by formula (2.87), and a similar formula can be easily derived for the group travel time by flipping the
sign in front of Q and replacing v̄ph by v̄gr.

9The technique of Appendix G, which exploits multiple objects, is an example of the feature-based registration.
10The value of L may not exceed the overall number of pixels in a given direction, see Appendix H.
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The ionospheric parameters ω̄2
pe and Q are reconstructed using the dual-carrier approach of Section 2.8,

i.e., by means of formulae (2.94) and (2.110). The values of ∆Ry and ∆y1 entering these formulae are
obtained by evaluating the shift between the two SAR images with the help of image registration (see
Section 2.8 and Appendix H). In doing so, the accuracy of reconstructing ω̄2

pe and Q will obviously depend
on the accuracy of registration. The latter is discussed in Appendix H, and for the rest of this section we will
analyze the effect of the registration errors on the performance of the corrected matched filter. In Section
2.7, we conducted similar analysis for a horizontally homogeneous ionosphere under the assumption that the
TEC is reconstructed exactly.

2.9.2 Residual errors of corrected filter

Throughout this section, we are using the tilde above the symbol (e.g., ω̃2
pe, α̃, W̃R) to denote the quantities

computed with the help of the reconstructed TEC.

2.9.2.1 Range factor.

The analysis of the range factor of the GAF will be based on formula (2.60) with the replacement

A(t− 2|y − x 0|/c) 7→ A2δ(t− 2|y − x 0|/ṽgr), where ṽgr = c

(
1− 1

2

ω̃2
pe

ω2
0

)
.

Note that the quantity Q does not contribute to T̃gr(x
0,y , ω0) because x0

1 = 0, so that T̃gr(x
0,y , ω0) =

|y − x 0|/ṽgr(ω0) [cf. formula (2.87)]. Changing the integration variable from t to u = t −
(
T̃gr(x

0,y , ω0) +

Tgr(x
0, z , ω0)

)
, we obtain [similarly to obtaining (2.66) from (2.63)]:

W̃R(y , z ) ∝
∫ τ̃/2

−τ̃/2
eiãu

2+ib̃udu, (2.113)

where [cf. formulae (2.52), (2.64), and (2.65)]

τ̃ = τ − 2δτ̃(y) = τ − 2
|y − x 0|

c

ω̃2
pe

ω2
0

B

ω0
, α̃ = α+ 2δα̃(y) = α+ 2

δτ̃

2

B

τ2
,

ã = α′′ − α̃, and b̃ = b̃(y , z ) = 2(α′′ + α)

(
|y − x 0|
ṽgr

− |z − x 0|
v̄gr

)
.

(2.114)

As in Section 2.4, we first disregard the quadratic phase term under the integral in (2.113), in which case it
approximately evaluates to [cf. formula (2.69)]

W̃R(y , z ) ∝ τ̃ sinc
( b̃τ̃

2

)
. (2.115)

From (2.115) and (2.114), we obtain the new overall displacement of the image in range:

S̃R = Ry (z )−Rz ≈ Rz
1

2

ω̄2
pe − ω̃2

pe

ω2
0

, (2.116)

whereRy (z ) = cT̃gr

(
x 0, z , ω0

)
andRz = |z−x 0|. Formula (2.116) shows that the displacement S̃R is directly

proportional to the error of the reconstructed TEC. The two “extreme” cases here are no correction at all,
i.e., no attempt to reconstruct the TEC, and the exact reconstruction of the TEC. If no filter correction
is implemented, then one can set ω̃2

pe = 0 and formula (2.116) reduces to (2.73), whereas if the TEC is

reconstructed exactly, then ω̃2
pe = ω̄2

pe and S̃R = 0, which is a result from Section 2.7.

To derive the new range resolution from (2.115) and (2.114), we set (α′′+α)∆̃Rτ̃
ṽgr

= π and get:

∆̃R ≈
πc

B

(
1− (δτ − δτ̃)

τ

)(
1− 1

2

ω̃2
pe

ω2
0

)
. (2.117)



32 CHAPTER 2. SAR IN AN ISOTROPIC FRAMEWORK

Again, with no correction ω̃2
pe = 0 and δτ̃ = 0, so that formula (2.117) reduces to (2.71).

To obtain quantitative estimates for (2.116) and (2.117), we need to relate the accuracy of reconstructing
the TEC to the accuracy of registering the two images, i.e., accuracy of obtaining the shift ∆Ry (Section 2.8
and Appendix H). Let us denote by δ(ω̄2

pe) and δ(∆Ry ) the errors in determining ω̄2
pe and ∆Ry , respectively.

Then, according to (2.94) we can write:

δ(ω̄2
pe)

def
= ω̄2

pe − ω̃2
pe ≈

2ω2
1ω

2
2δ(∆Ry )

ω2
2R

(2)
y − ω2

1R
(1)
y

. (2.118)

In turn, the error in evaluating the shift ∆Ry can be taken as a fraction of the undistorted range resolution
or, equivalently, a fraction of the pixel size (see Appendix H):

δ(∆Ry )
def
= ζR

πc

B
. (2.119)

Hence, combining formulae (2.116), (2.118), and (2.119), we can write:

S̃R ≈ Rz
ω2

2

ω2
2R

(2)
y − ω2

1R
(1)
y

ζR
πc

B
, (2.120)

where we have identified the central carrier frequency ω0 with one of the two carrier frequencies used for
dual-carrier probing, namely, ω1.11 Next, let us introduce the carrier frequency separation factor

Z
def
=
|ω2 − ω1|

ω1
, (2.121)

and assume that Z � 1, which also implies ω2+ω1

ω1
≈ 2. Then, given that Rz ≈ R

(1)
y ≈ R

(2)
y ≈ R, formula

(2.120) yields:

S̃R ≈
ζR
2Z

πc

B
. (2.122)

Remarkably, this estimate of the residual displacement given as a fraction of the range resolution πc
B does not

depend on the TEC. If, for example, Z = 10% (ω1/2π = 300MHz as in Table 1.1 and ω2/2π = 330MHz), and
the dimensionless factor ζR = 0.05 = 5%, which is reasonable for sub-pixel registration, then formula (2.122)
yields S̃R ≈ 5.5m. This is a most noticeable improvement over SR ≈ 450m given by formula (2.73). In other
words, with the filter correction in effect, the displacement of the image in range is practically removed. As
for the range resolution (2.117), it shows little change compared to either (2.71) or the undistorted value πc

B .
What the correction of the filter helps improve very substantially is the contrast/sharpness of the GAF.

The corresponding estimate is given by formula (2.72) with the following QPE [see (2.64), (2.67), (2.114),
(2.116), and (2.122)]:

φ̃q = |ã| τ̃
2

4
= |α′′ − α̃| τ̃

2

4
= 2|δα− δα̃| τ̃

2

4
= 2α

|δα− δα̃|
α

τ̃2

4
=
B

τ

|δτ − δτ̃ |
τ

τ̃2

4

≈ B

τ2

R

c

∣∣∣∣∣ ω̃2
pe

ω2
0

−
ω̄2

pe

ω2
0

∣∣∣∣∣ Bω0

τ̃2

4
≈ B

τ2

R

c

∣∣∣∣∣2S̃RR
∣∣∣∣∣ Bω0

τ̃2

4
=

B

τ2c
2
ζR
2Z

πc

B

B

ω0

τ̃2

4
≈ ζR

4Z

πB

ω0
,

(2.123)

which yields only about 0.2% of contrast deterioration for the parameters in Table 1.1, as opposed to 20% in
the non-corrected case (2.72). If the TEC is reconstructed exactly, then the correction yields about 4 orders
of magnitude of improvement, see Section 2.7.

Remark. Another way of comparing the initial shift and the residual shift (formulae (2.73) and (2.122),
respectively) is to determine the TEC sensitivity, i.e., the minimal value of the TEC for which the correction
is still beneficial. The carrier frequency separation factor Z in (2.122) cannot be made very large because of
the technical limitations. In Appendix I, we analyze the extreme situation where the separation of carrier
frequencies is capped by the single bandwidth. This is called a split bandwidth configuration. The analysis
shows that in this case, the formulae for the residual shift and the TEC sensitivity have an inverse square
dependence on the system bandwidth, see (I.4) and (I.5), as opposed to the inverse dependence on the
bandwidth in (2.122).

11In fact, ω0 can be identified either with ω1 or with ω2.
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2.9.2.2 Azimuthal factor.

The azimuthal factor of the GAF W̃A(y , z ) with the corrected filter will still be given by formula (2.75),
where instead of (2.74) we substitute

Ψ̃n =
c(T̃ph(xn,y , ω0)− Tph(xn, z , ω0))

R
. (2.124)

Then, using formulae (2.50), (2.76), and (2.87) we can write:

Ψ̃n ≈
(

1 +
(y1 − xn1 )2

2R2

)(
1− 1

2

ω̃2
pe

ω2
0

[1 + Q̃(xn1 − y1)]
)

−
(

1 +
(xn1 )2

2R2

)(
1− 1

2

ω̄2
pe

ω2
0

(1 +Qxn1 )
)

≈ − y1x
n
1

R2

(
1− 1

2

ω̃2
pe

ω2
0

)
+
ω̄2

pe − ω̃2
pe

ω2
0

(xn1 )2

4R2
+
ω̄2

peQ− ω̃2
peQ̃

2ω2
0

xn1 + const,

(2.125)

where we have dropped the small term 1
2

ω̃2
pe

ω2
0

y1x
n
1

R2 Q̃(xn1 − y1), as well as all the terms ∼ (xn1 )3, which are

also small. The first term on the last line of (2.125) corresponds to the first term on the right-hand side
of (2.89), whereas the second and third terms show the effect of the corrected filter on the azimuthal QPE
and azimuthal displacement of the image, respectively. The term “const” combines everything that does not
depend on n.

To evaluate the azimuthal displacement for the corrected filter using formula (2.125), we first introduce
the dimensionless registration accuracy ζA as a fraction of the undistorted azimuthal resolution (2.81) [cf.
formula (2.119)]:

δ(∆y1)
def
= ζA∆A = ζA

R

2

λ

LSA
. (2.126)

Then, the error of reconstructing the quantity ω̄2
peQ can be obtained from formula (2.110) with the help of

formulae (2.126) and (2.121):

δ(ω̄2
peQ)

def
= ω̄2

peQ− ω̃2
peQ̃ ≈

1

R2

ω2
1ω

2
2

ω2
2 − ω2

1

ζAR
λ

LSA
≈ ζA

2Z
ω2

0

λ

RLSA
. (2.127)

Formula (2.127), combined with (2.75) and (2.125), yields the residual azimuthal displacement of the image
in the case of a corrected filter [cf. formula (2.90)]:

S̃A =
1

2
R2

δ(ω̄2
peQ)

ω2
0

=
ζA
2Z

R

2

λ

LSA
, (2.128)

which is approximately 2.5m for the typical parameters given in Table 1.1. Note that formulae (2.122)
and (2.128) are similar in the sense that both use the factors ζR,A/(2Z) to relate the residual displacement of

the image S̃R and S̃A to the range and azimuthal resolution given by formulae (2.71) and (2.81), respectively.
Similarly to the range resolution (2.117), the new azimuthal resolution obtained with the help of formulae

(2.75) and (2.125)

∆̃A =
1

2

λ0R

LSA

(
1 +

1

2

ω̃2
pe

ω2
0

)
shows little change after the correction of the filter [i.e., little change compared to (2.81)]. Yet the GAF
contrast in the azimuthal direction improves very substantially. Indeed, the new value of the parameter â
[see formulae (2.78) and (2.79)] due to the second term on the last line of (2.125) differs from the one that
corresponds to (2.77) [or (2.89)] by a factor of δ(ω̄2

pe)/ω̄2
pe. Hence, the same will be the reduction of the

azimuthal QPE, and using formulae (2.118), (2.119), and (2.82) we get:

φ̃qA = φqA

δ(ω̄2
pe)

ω̄2
pe

=
ζR
8Z

πω0L
2
SA

R2B
. (2.129)

Expression (2.129) leads to only about 0.4% of deterioration of the GAF contrast in azimuth, as opposed to
35% given by formula (2.82).
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2.10 The effect of ionospheric turbulence

In our previous analysis regarding correcting the matched filter we have assumed that the electron number
density in the ionosphere was a regular function of the altitude h and, maybe, the horizontal coordinate x1:
Ne = Ne(x1, h), see Sections 2.4 and 2.5, as well as Appendices B and E. The actual Earth’s ionosphere,
however, is a turbulent medium, see Appendix D.

Turbulent fluctuations of the ionosphere will affect the group and phase travel times that are otherwise
derived in Sections 2.4 and 2.5 with no account for randomness. Specifically, in the framework of Section 2.4,
we assume that the mean electron number density depends only on the altitude: 〈Ne〉 = 〈Ne(h)〉. Then,
expressions (2.49) for Tgr and Tph keep their form, and so do expressions (2.50) that introduce the average
velocities. However, according to (2.9) (and (D.15), (D.16)), instead of formula (2.92) for the quantity ω̄2

pe

that enters into (2.50), we now need to write:

ω̄2
pe =

1

Rz

∫ Rz

0

ω2
pe(s)ds =

4πe2

meRz

[∫ H

0

〈Ne(h)〉 dh
cos θ

+

∫ Rz

0

µ(s)ds

]

=
4πe2

meH

∫ H

0

〈Ne(h)〉dh+
4πe2

meRz

∫ Rz

0

µ(s)ds =
4πe2

me

NH
H

+
4πe2

meRz

∫ Rz

0

µ(s)ds,

(2.130)

where the new definition of the TEC is [cf. formula (2.54)]

NH
def
=

∫ H

0

〈Ne(h)〉dh. (2.131)

In the case of a horizontally inhomogeneous ionosphere (Section 2.5), for the group travel time Tgr we
can write following (C.20) and taking into account (2.9):

Tgr(x , z , ω) =

∫ Rz

0

ds

vph(s)
≈ Rz

c
+

1

2c

∫ Rz

0

4πe2

meω2
(〈Ne(s)〉+ µ(s))ds

=
Rz

c
+

1

2c cos θ

∫ H

0

4πe2

meω2
〈Ne(ξ1(h), h)〉dh+

1

2c

∫ Rz

0

4πe2

meω2
µ(s)ds,

(2.132)

which is slightly modified from (D.15) to account for the horizontal inhomogeneity. Similarly, for the phase
travel time Tph we can use (C.21) and (2.9) to modify (D.16):

Tph(x , z , ω) =

∫ Rz

0

ds

vph(s)
≈ Rz

c
− 1

2c

∫ Rz

0

4πe2

meω2
(〈Ne(s)〉+ µ(s))ds

=
Rz

c
− 1

2c cos θ

∫ H

0

4πe2

meω2
〈Ne(ξ1(h), h)〉dh− 1

2c

∫ Rz

0

4πe2

meω2
µ(s)ds.

(2.133)

The Taylor formula for 〈Ne〉 = 〈Ne(ξ1, h)〉 yields [cf. formula (2.83)]:

〈Ne(ξ1, h)〉 ≈ 〈Ne(0, h)〉+ ξ1
∂

∂ξ1
〈Ne(0, h)〉, (2.134)

and substituting the right-hand side of (2.134) into (2.132), we arrive at the same formula (2.87) as in
Section 2.5, but with the new definitions of some of the expressions that it is comprised of. Namely, the

quantity ω̄2
pe enters into formula (2.87) through the average velocity v̄ph(ω) = c

(
1 + 1

2

ω̄2
pe

ω2

)
, see (2.50), and

according to (2.132), it should now be evaluated as follows [cf. formula (2.130)]:

ω̄2
pe =

4πe2

me

[
1

H

∫ H

0

〈Ne(0, h)〉dh+
1

Rz

∫ Rz

0

µ(s)ds

]
=

4πe2

me

NH
H

+
4πe2

meRz

∫ Rz

0

µ(s)ds, (2.135)

so that the TEC is re-defined again, this time via 〈Ne(0, h)〉 [cf. formula (2.131)]:

NH
def
=

∫ H

0

〈Ne(0, h)〉dh. (2.136)
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Moreover, the first moment Q(x 0, z ) that also enters into formula (2.87) is re-defined in the presence of
turbulence according to (2.134) [cf. formula (2.88)]:

Q(x 0, z )
def
=

1

H2

∫ H

0

4πe2

meω̄2
pe

∂

∂ξ1
〈Ne(0, h)〉h dh. (2.137)

In doing so, we emphasize that the factor ω̄2
pe appears in the second term on the right-hand side of (2.87)

only for the convenience of notation. In fact, this second term does not depend on ω̄2
pe because this quantity

also appears in the denominator in (2.137). Hence, randomness contributes only to the first term on the
right-hand side of (2.87) via (2.135).

Along with the travel times, turbulent fluctuations may impact the contraction and rate of the propagating
pulse. Specifically, formulae (2.52) and (2.64) will remain unchanged, but the expression for δτ will now
depend on ω̄2

pe given by (2.130) or (2.135). Altogether, the new quantities will affect the dispersive propagator
(2.38), (2.40), and through it, both the range and azimuthal factor of the GAF, see formulae (2.60) and (2.61).

It turns out that the overall effect of turbulent fluctuations on the performance of the SAR sensor in
range is small. More precisely, even though the quantity ω̄2

pe that determines the shape of the propagating
pulse (2.52), (2.64), as well as the displacement of the target in range (2.73), contains a stochastic component

∼
∫ Rz

0
µ(s)ds, see (2.130), (2.135), this component is small because µ is ergodic and 〈µ〉 = 0. Indeed, let

ϕ0 =

∫ Rz

0

µ(s)ds, 〈ϕ0〉 = 0, (2.138)

denote the random contribution to the eikonal (up to a constant factor). Then, following [46, Chapter I], in
the case of a homogeneous plasma we obtain with the help of (2.17) and (2.15):

〈ϕ2
0〉 = π2Rz

∫ ∞
0

V̂ (q)qdq = π2Rz
Cq2

0

2(κ− 1)

=Rz 〈µ2〉
√
πΓ(κ)

2q0Γ(κ− 3
2 )(κ− 1)

=
Rzr0

2
〈µ2〉.

For the inhomogeneous plasma, we can write following [46, Chapter I] and using (2.11):

〈ϕ2
0〉 ≈

r0

2

∫ Rz

0

〈µ2(s)〉ds =
r0

2
M2

∫ Rz

0

〈Ne(s)〉2ds

=
r0

2

M2

cos θ

∫ H

0

〈Ne(ξ1(h), h)〉2dh def
=

r0

2

M2

cos θ
N2,H ,

(2.139)

where according to [43], the value of N2,H for high altitudes H is between 9.3 · 1018cm−5 and 9.9 · 1020cm−5,
with the average of about 5 · 1019cm−5.

Next, we return to formula (2.132) for the travel time in the turbulent ionosphere and realize that the
second term on its right hand side accounts for the contribution of the baseline, i.e., deterministic, dispersion,
whereas the third term is responsible for that of the turbulent fluctuations. The magnitude of the second

term is ∼ 1
c

4πe2

meω2NH , while the magnitude of the third, random, term shall be estimated via its standard

deviation, which yields ∼ 1
c

4πe2

meω2

√
〈ϕ2

0〉. Hence, the ratio of the third term to the second one is√
〈ϕ2

0〉
NH

∼
M
√
r0N2,H

NH
� 1. (2.140)

Indeed, the ratio (2.140) is approximately between 2 · 10−4 and 7 · 10−4 for the typical parameters listed
in Table 1.1, including the correlation length r0 that ranges between 105cm and 106cm. Similarly, to see
what the role of randomness is in determining the shape of the propagating pulse we need to compare the
standard deviation

√
〈δτ2〉 to the mean 〈δτ〉, where δτ is defined by formula (2.52) and ω̄2

pe is defined by

formula (2.135). It is easy to see that the ratio

√
〈δτ2〉
〈δτ〉 evaluates to the same quantity as given by formula
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(2.140). We therefore conclude that the contribution of turbulent fluctuations to travel times, as well as to
the change of the pulse duration and rate in the course of its propagation in the ionosphere, is much smaller
than that of the baseline dispersion.

To evaluate the azimuthal factor (2.61) of the GAF, we denote similarly to (2.138)

ϕn =

∫ Rz

0

µ(s)ds, (2.141)

and instead of (2.75) obtain:

W ′A(y , z ) =

N/2∑
n=−N/2

e
2iω0
c

(
RΨn+ 1

2
4πe2

meω
2
0
ϕn

)
, (2.142)

where [cf. formula (2.89)]

Ψn = −y1x
n
1

R2
+

4πe2

meω2
0

NH
H

(xn1 )2

4R2
+
ω̄2

pe

2ω2
0

Qx1. (2.143)

Formula (2.143) is written under the same assumptions of z1 = 0 and y3 = z3 as in Section 2.4, and the
TEC NH is given by (2.136). Again, we note that the last term on the right-hand side of (2.143) does not
depend on ω̄2

pe because of the definition of Q (2.137).
Due to the central limit theorem [77, Chapter 2], each eikonal ϕn of (2.141) is a Gaussian random variable

with zero mean, 〈ϕn〉 = 0. Hence, the mean of each term of (2.142) is〈
e

2iω0
c

(
RΨn+ 1

2
4πe2

meω
2
0
ϕn

)〉
= e

2iω0R
c Ψn

1√
2π 〈ϕ2

n〉

∫ ∞
−∞

e
iω0
c

4πe2

meω
2
0
ξ
e
− ξ2

2〈ϕ2
n〉 dξ

= e
2iω0R
c Ψne

− 1
2

ω2
0
c2

(
4πe2

meω
2
0

)2

〈ϕ2
n〉
.

(2.144)

The variances of all individual ϕn can be assumed approximately equal to one another because the
variation of the integration distance Rz in (2.141) with respect to n is small compared to R, see (2.76):

ω2
0

c2

(
4πe2

meω2
0

)2

〈ϕ2
n〉 ≈ σ2, n = −N/2, . . . , N/2.

Then, as shown in [8], we have:

〈W ′A(y1, 0)〉 ∝ e−σ
2/2

N/2∑
n=−N/2

e
2iω0R
c Ψn , (2.145)

where Ψn is given by (2.143) or, equivalently, (2.89) in the non-turbulent case. The factor e−σ
2/2 in front

of the sum on the right hand side of (2.145) represents the phenomenon of extinction, see [46, Chapter I].
The value of σ2 for the typical parameters we have chosen, see Table 1.1, is σ2 ≈ 0.058 if r0 = 1km, and
σ2 ≈ 0.58 if r0 = 10km. Other than the extinction, the sum on the right hand side of (2.145) is the same as
that in (2.75); it controls the SAR performance in azimuth in the case of a non-fluctuating ionosphere.

While formula (2.145) shows that the mean value of the azimuthal factor of the GAF essentially coincides
with its deterministic counterpart, the ionospheric turbulence still manifests itself through the presence of
random eikonals ϕn in the exponents on the right-hand side of (2.142). The effect of randomness on the
azimuthal resolution is stronger than that on the range resolution. The reason is that the range resolution is
basically determined by a single look, and because of the ergodicity the contribution of turbulent fluctuations
into the radar reading averages out, see formulae (2.138)–(2.140). On the contrary, azimuthal resolution is
built using multiple looks, n = −N/2, . . . , N/2, and whereas the contribution of randomness into each
individual reading is still small, it can get amplified when those readings are summed up.

To quantify this “un-averaging” effect [8], one needs to estimate the variance of the sum (2.142). Each
term in this sum is a random variable with a logarithmically normal distribution [78], and as long as those
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variables are uncorrelated, they are also independent [8, Appendix F]. Therefore, the covariance of the
received signals will also provide a measure of independence for the random variables in the sum (2.142). If
the fluctuations of the phase are small, which is the case for our study, then the correlation function of the
field is approximately equal to the correlation function of the electron number density (2.10), see [46, Chapter
I]. Therefore, the correlation length r0 given by formula (2.15) also provides a characteristic scale of how
rapidly the received field decorrelates along the synthetic antenna. Roughly speaking, for the locations that
are further apart than r0 the received pulses will be uncorrelated and hence independent, whereas for the
locations that are closer than r0 they will not be independent.

Therefore, we follow the argument given in [8]: the variances of the individual terms in the sum (2.142)
are close to one another. Thus we can artificially split the synthetic array into several clusters of elements
with the length r0, and assume that the random variables from the sum (2.142) that belong to a given
cluster are identical, whereas for different clusters they are independent, see the argument between (2.144)
and (2.145). An estimation for the total length of the array, LSA, is given in Table 1.1 at 50km. Therefore
the number of clusters is ∼ LSA

r0
, and the number of elements in each cluster is

Nc ≈ (N + 1)
r0

LSA
≈ r0

∆x1
.

This yields the variance of (2.142):

σ2
Σ =

LSA
r0

N2
c σ

2 ≈ r0

LSA
(N + 1)2σ2, (2.146)

and as also shown in [8], the corresponding relative change of the azimuthal resolution is ∼ σ
2

√
r0
LSA

. For

the typical parameters (see Table 1.1), this quantity is about 1.7% if r0 = 1km, and 17% if r0 = 10km. It
may get even higher if the instantaneous values for M and N2,H , see (2.11) and (2.139), happen to be larger
than their typical averages.

The fact that the performance of the SAR system in range is only weakly sensitive to turbulent fluctuations
indicates that the ionospheric turbulence will basically not affect any of the considerations of Sections 2.8
and 2.9 related to reconstructing the TEC with the help of formula (2.94), improving the robustness of
reconstruction by means of the image registration, and assessing the quality of the image obtained with the
corrected filter. At the same time, as the random contribution to individual travel times averages out, the
proposed filter correction is essentially based on deterministic quantities only. As such, we do not expect
that it will provide an efficient means for reducing the ionospheric distortions of the image that are due to
the turbulence.

It is also to be noted that the conditioning of formula (2.110) may be better than that of formula (2.94)

because the individual quantities y
(1)
1 and y

(2)
1 may not be as large compared to the azimuthal shift ∆y1.

There may, however, be a potential difficulty of a different nature in evaluating Q by formula (2.110),
because unlike the range resolution, the azimuthal resolution of a SAR system is sensitive to the turbulent

fluctuations of the ionosphere, see formula (2.146). This sensitivity may induce larger errors in y
(1)
1 and y

(2)
1 .

Addressing the accuracy considerations for Q will be a subject of future study.

2.11 Chapter Summary

In this chapter, we have seen how the Earth’s ionosphere can affect the performance of a satellite based SAR
system operating in the P-band. The analysis was conducted for the simplest case of a scalar interrogating
field propagating in an isotropic ionosphere. It was shown that the images generated by the system will be
distorted in a number of ways due to a mismatch between the received signal and the matched filter. Then,
we have introduced and analyzed a method of probing the target, and hence the ionosphere, on two distinct
carrier frequencies [1]. It can provide an accurate estimate of the ionospheric TEC, which subsequently
helps correct the filter. However, this method appears poorly conditioned, meaning that small errors in the
input data may result in large errors in the estimate of the TEC. The use of image registration can alleviate
this issue and make the procedure both accurate and robust [3]. There is no perfect reconstruction method
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for the TEC though, and thus we investigated how the errors of the reconstruction affect the performance
of the corrected matched filter. We concluded this chapter with quantifying the effect of the ionospheric
turbulence on spaceborne SAR images, which was done in the statistical sense. We saw, in particular, that
turbulence mainly affects the azimuthal performance of the system. This analysis may help develop the
future mitigation strategies for image distortions due to the ionospheric turbulence.

In the following chapter, we extend our approach to the case of polarized SAR signals propagating in an
anisotropic (gyrotropic) ionosphere.



Chapter 3

Single-polarization SAR imaging in
the presence of Faraday rotation

3.1 Introduction

This chapter is based on [4].

As we have already seen, the Earth’s ionosphere may have an adverse effect on spaceborne synthetic
aperture radar (SAR) imaging. In [8] and the previous chapter, it was shown that this adverse effect shall
be attributed to the mismatch between the actual radar signal affected by the dispersion of radio waves in
the ionospheric plasma, and the matched filter used for signal processing. Accordingly, to improve the image
one should correct the filter, which requires knowledge of the total electron content (TEC) in the ionosphere
along the signal path. The TEC, in turn, can be reconstructed by probing the ionosphere on two distinct
carrier frequencies and exploiting the resulting redundancy in the data.

The analysis in [8] and Chapter 2 was done under the assumption that the interrogating field is scalar,
and that it propagates in an isotropic medium. In reality, however, the electromagnetic field is represented
by vector quantities, and the ionospheric plasma is anisotropic (gyrotropic) due to the magnetic field of
the Earth. The primary effect of gyrotropy on a linearly polarized electromagnetic wave is the Faraday
rotation (FR). The FR is a slow rotation of the polarization plane due to the accumulating phase difference
between the doubly refracted circularly polarized waves that form the original linear polarization. The
phase difference accumulates because the two circularly polarized waves propagate with slightly different
phase speeds in a gyrotropic plasma [7,79].

The Faraday rotation may have both a positive and negative effect on the transionospheric SAR imaging.
If the full polarimetric data are available, then one can reconstruct the FR angle for the radar pulse round-
trip between the antenna on the orbit and the target on the ground. The latter, in turn, can be used to
obtain the TEC, see, e.g., [17, 23, 26, 80, 81] and [25, Section 10.4], although the resulting value of the TEC
will be subject to ambiguities in the FR angle that can only be determined up to a constant multiple of 2π.
If the full polarimetric data are not available, then, according to [17,80], an explicit a priori estimate of the
Faraday rotation is required for understanding how the ionosphere affects the image. For single-polarization
imaging, the FR yields an additional mismatch between the received signal and the filter. This mismatch
can cause an adverse effect if, e.g., the returned linear polarization is (nearly) perpendicular to the emitted
polarization, and hence perpendicular to the field direction that the antenna can receive efficiently. The
previous scenario is by no means impossible, because the rotation angle in the P-band1 can be quite large.

Even if the emitted and received polarizations are not close to perpendicular, the FR may still be
detrimental for imaging. Indeed, the rotation angle may vary substantially along the radar chirp, in which
case one can qualitatively think of the received signal as “twisted.” This happens, in particular, when the
carrier frequency is low (P-band) and the bandwidth is high (for better resolution). To the best of our

1Recall that P-band is the range of frequencies that partially overlaps with VHF and UHF, and which may be of interest
for a number of SAR applications that require, say, some ground and/or foliage penetration.

39



40CHAPTER 3. SINGLE-POLARIZATION SAR IMAGING IN THE PRESENCE OF FARADAYROTATION

knowledge, the twisting phenomenon has not received any attention in the previous studies of the Faraday
rotation for SAR, see [17,23,25,26,80,81]. It is, however, very important, as it can cause substantial image
artifacts, such as split intensity peaks, see Section 3.5.

To quantify the overall effect of the Faraday rotation on a spaceborne SAR image, we first notice that
the impact of the magnetic field of the Earth on the dispersion of radio waves in the ionosphere is negligible,
and therefore, the dispersive propagation and the Faraday rotation can be studied independently. Moreover,
it turns out that the matched filter corrected for dispersion in the scalar framework, see [8] and Chapter 2,
will still eliminate the dispersion-induced distortions in the presence of gyrotropy, while leaving the FR effect
intact. Hence, the latter can be analyzed regardless of the dispersion, i.e., as if the rotation accompanied a
plain non-dispersive propagation (see Appendix K).

In the current chapter, we use the image autocorrelation analysis to quantify the effect of the Faraday
rotation on a single-polarization spaceborne SAR image, and correct for the corresponding distortions. The
presentation is organized as follows.

We briefly revisit the SAR ambiguity theory in Section 3.2. Section 3.3 describes the modification of the
radar ambiguity function due to the FR. In Sections 3.4 and 3.5, we discuss how one can use the information
from a given SAR image in order to detect the Faraday rotation and characterize its variation over the
frequency band of the radar. Subsequently, the SAR filter can be corrected to match the actual received
signal in the presence of the Faraday rotation and thus improve the quality of the image (Section 3.6). As
in Chapter 2, a number of lengthy derivations have been moved to Appendices. Specifically, the FR of a
chirped signal is analyzed in Appendix J, and the properties of the SAR ambiguity function in the presence
of both the dispersion and FR are studied in Appendix K and Appendix L. Appendix A is also revisited.

3.2 Review of the SAR ambiguity theory

Referring back to Chapter 2, we recall that the sum (2.31) is called the generalized ambiguity function (GAF)
of the SAR. The constant tn in (2.30) can be removed by changing the integration variable (shifting). Then,
noticing that the dependence of A(uny ) and A(unz ) on n is through xn and is therefore weak, we can pull
these terms out of the summation over n, so that the GAF (2.31) can be factorized (see [1, 3, 5, 82]):

W (y , z ) ≈WA(y , z ) ·WR(y , z ). (3.1)

In formula (3.1),

WA(y , z ) =

N/2∑
n=−N/2

e2iω0(Rny −R
n
z )/c, (3.2)

WR(y , z ) =

∫
χ

A(u0
y )A(u0

z ) dt, (3.3)

and the superscript “0” refers to formulae (2.30) for x = x 0. We emphasize that representation (3.1)–(3.3)
is only approximate. The error of the factorization is analyzed in Appendix A and is shown to be small, of
the order of B

ω0
, see formula (A.19). Moreover, this error becomes even smaller (insignificant) if the target z

and the reference point y have either the same range coordinate or the same azimuthal coordinate.
The range factor WR of (3.3) is expressed as

WR(y , z ) ≈ τwp(ξ) ≡ τwp
(
π
R0

y −R0
z

∆R

)
, where ∆R =

πc

B
. (3.4)

The quantity ∆R in formula (3.4) is the range resolution, and

wp(ξ) =
1

τ

∫
χ

A(u0
y )A(u0

z ) dt ≈ 1

τ

∫ τ/2

−τ/2
eibudu = sinc ξ,

b =
4α(R0

y −R0
z )

c
, ξ =

bτ

2
= π

R0
y −R0

z

∆R
≈ π (y2 − z2) sin θ

∆R
.

(3.5)
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The function wp(ξ) of (3.5) defines the shape of the GAF in the range direction. Also note that wp(ξ) =
1
τw0

(
2ξ
τ

)
, where w0 was used in the previous chapter and defined in (2.69).

Remark. In formula (3.5) [as well as in (3.18) below], we use ±τ/2 as the integration limits. In Appendix A,
more accurate expressions for these limits are introduced: ±τ0/2, where τ0 = τ − 2|R0

y −R0
z |/c [see formu-

lae (A.4)–(A.5)]. Since for the high range resolution chirp we are assuming Bτ � 1 [72, 73], one can show
that

|τ − τ0|
τ

=
2|R0

y −R0
z |

cτ
∼ ∆R

cτ
=

π

Bτ
� 1,

so the difference is insignificant.

3.3 Ambiguity function in the presence of the Faraday rotation

The propagation of radar signals in the ionospheric plasma affects the SAR imaging in two ways. First, the
temporal dispersion of radio waves alters the envelope and phase of the received signal, see [8] and Chapter 2.
Second, the magnetic field of the Earth causes the Faraday rotation, see [7, 14,17]. These distortions, if not
accompanied by the proper corrections of the filter, lead to image deterioration due to the filter mismatch.

In Appendix J, we consider the effect of the FR on the chirped signals. For an antenna operating on
a single linear polarization, the effective antenna signal in the presence of the rotation is related to the
non-rotated signal ψ(t,x ) of (2.25) as

ψF (t,x ) = ψ(t,x ) cosϕF (ω), (3.6)

where ϕF is the rotation angle [see the top row of (J.18)]. For the two-way propagation in a magnetized
plasma, the angle ϕF depends on the instantaneous frequency as

ϕF (ω) = 2 · R
2c

ω2
peΩ cosβ

ω2
∝ ω−2 (3.7)

[see also (J.19)], where R is the distance from the target to the orbit (300–1000 km), ωpe is the Langmuir
frequency, Ω is the electron cyclotron frequency, and β is the angle between the ray path and the magnetic
field. For the actual ionosphere, the quantity ω2

peΩ cosβ in (3.7) should be averaged over the ray path.
Formula (3.7) shows that the low frequency and high frequency parts of the chirp (2.18) will be rotated by
different angles and, according to (3.6), attenuated by different factors when received by the antenna.

Next, we approximate cosϕF in (3.6) by the first two terms of its Taylor expansion w.r.t. u = t− 2R/c,
and, using (2.20), obtain:

cosϕF (u) ≡ cosϕF (ω(u)) ≈ p+
2q

τ
u, (3.8)

where
p = cosϕF (ω0),

q =
τ

2

d cosϕF
du

(ω0) = −τ
2

sinϕF
dϕF
dω

dω

du
(ω0)

≈ BR

c

ω2
peΩ cosβ

ω3
0

sinϕF (ω0) =
B

ω0
ϕF (ω0) sinϕF (ω0).

(3.9)

Thus, the FR manifests itself by an additional attenuation of the signal received by the antenna, with the
attenuation coefficient, cosϕF , varying over the chirp [see (3.6) and (3.8)]. Two non-dimensional constants,
p and q, are introduced in (3.8), (3.9) to describe this effect. If we take the amplitude of the non-rotated
antenna signal as 1, then, with the FR present, the amplitude at the center of the chirp is p, while the
end-to-end variation over the chirp is 2q. We have |p| 6 1 by definition, and |q| � 1 as a condition of
applicability of the Taylor linearization, see (3.8).

Of course, the use of linear approximation in (3.8) is justified only if the variation of cosϕF over the
chirp is small, i.e., |q| � 1. The Faraday rotation angle for ω0/2π . 0.5GHz may reach π/2 for ionospheric
propagation, see [14]. Taking B/ω0 ∼ 5%, we have about 0.1 · π/2 variation of the Faraday rotation angle
over the chirp, see (3.9), which we consider sufficiently small for linearization.
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As mentioned in Section 3.1, the cause of the FR is double circular refraction in a gyrotropic medium [79,
Chapter XI], which results in different propagation speeds for two circular waves that form the original
linear polarization, see also Appendix J for detail. In the dispersive yet rotation-less case, see [8] and
Chapter 2, correcting the filter for dispersive effects helps remove the corresponding image distortions, and
the expression for the GAF becomes similar to that for the non-dispersive case. In Appendix K, we show that
in the presence of both the dispersion and gyrotropy, such a filter will still eliminate the dispersion-related
part of distortions, leaving the rotation effect intact. For that reason, for the rest of this chapter we assume
that the FR accompanies a plain non-dispersive propagation of the radar signals described in Chapter 2. In a
comprehensive setting, this means that the compensation of the Faraday rotation in the SAR filter discussed
in Section 3.6 should be applied on top of the dispersion correction.

In the presence of the Faraday rotation, the imaging formula (2.29) transforms into

IF (y) =

∫
χ

P (t− 2|x − y |/c)ψF (t,x ) dt

=

∫
ν̃(z )WF (y , z )dz ,

(3.10)

where ψF (t,x ) is given by (3.6) and the kernel WF (y , z ) takes into account (3.8):

WF (y , z ) =

∫
χ

P (uy )P (uz ) cosϕF (uz ) dt

= pW (y , z ) + q
2

τ
Wq(y , z ).

(3.11)

In formula (3.11), W (y , z ) coincides with that of (2.29), and

Wq(y , z ) =

∫
χ

P (uy )uzP (uz ) dt. (3.12)

Remark. In the rest of this chapter, we will be using the subscript “q” to denote contributions due to the
Faraday rotation, as in (3.12); in the isotropic case (i.e., when there is no magnetic field), these terms vanish.
The subscript “F” will be used to denote the characteristics affected by the Faraday rotation, i.e., having
both rotational and non-rotational “components,” as on the left-hand side of (3.11); in the isotropic case,
these expressions reduce to their isotropic counterparts, e.g., WF (y , z ) in (3.11) reduces to W (y , z ) in (2.29).

For the sequence of emitted and received signals, definition (2.31) is replaced by (K.4) with primes
dropped:

WF (y , z ) =

N/2∑
n=−N/2

Wn
F (y , z ), (3.13)

where Wn
F (y , z ) is given by the first line of (3.11). Using approximation (3.8), we can write:

Wn
F (y , z ) = pWn(y , z ) + q

2

τ

∫
χ

P (uny )unz P (unz ) dt, (3.14)

where Wn(y , z ) is the same as in (2.30). An approximate factorization of the GAF (3.13), (3.14) similar
to (3.1) is also possible:

WF (y , z ) ≈WA(y , z ) ·WRF (y , z ), (3.15)

where the azimuthal factor WA(y , z ) does not change and is still defined by (3.2), and

WRF (y , z ) = pWR(y , z ) + q
2

τ
WqR(y , z ). (3.16)

In formula (3.16), WR(y , z ) is given by (3.3), and

WqR(y , z ) =

∫
χ

A(u0
y )u0

zA(u0
z ) dt. (3.17)
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Thus, the effect of the Faraday rotation results in a modification of the range factor in the approximate
formula (3.15) compared to (3.1): WRF (y , z ) of (3.16), (3.17) replaces WR(y , z ) of (3.3). It is shown in
Appendix L that the error due to the factorization (3.15) is small — of the same order as that for (3.1), i.e.,
about B

ω0
, see formula (L.5).

Introducing a new dimensionless function

wq(ξ)
def
=

2

iτ2

∫
χ

A(u0
y )u0

zA(u0
z ) dt ≈ 2

iτ2

∫ τ/2

−τ/2
ueibudu

=
2

τ2

1

i2
d

db

∫ τ/2

−τ/2
eibudu = − d

dξ
wp(ξ) = −w′p(ξ),

(3.18)

we can represent WRF of (3.16) as

WRF (y , z ) = WRF (ξ) = τ
(
pwp(ξ) + iqwq(ξ)

)
, (3.19)

where wp, b, and ξ are given by (3.5).

Remark. When integrating in (3.18), we have replaced τ0 with τ , similarly to how we did it for wp, see formula
(3.5) and the subsequent remark. This introduces a small error. The formulae with no simplification can be
found in Appendix L, see (L.4).

Figure 3.1: Components of the range factor (3.19) in the presence of the Faraday rotation.

3.4 Detection of the Faraday rotation

The Faraday rotation affects the GAF WF (y , z ) via the range factor (3.19). It is to be noted that while the
real part of the range ambiguity function WRF in (3.19) is an even function of its argument, see (3.5), the
imaginary part is proportional to wq = −w′p and is therefore an odd function, see Figure 3.1 (the singularity
of wq at ξ = 0 is removable by setting wq(0) = 0). As far as the relative contribution of wp and wq into
WRF , there are several qualitatively different regimes determined by the range of variation of the attenuation
coefficient cosϕF over the bandwidth, see (3.8).

(a) |q| � |p|: This is the case of nearly uniform attenuation where all possible ϕF ’s lie in a narrow range of
angles, see Figure 3.2(a). In essence, it is this case that has been previously assumed in the literature when
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φF 

(a) Narrow range of ϕF

φF 

(b) Intermediate range of ϕF

φF 

(c) Wide range of ϕF

Figure 3.2: Examples of possible ranges of ϕF for the chirp propagating through a gyrotropic medium shown
in a plane normal to the direction of propagation. The thick arrow indicates the polarization of the emitted
field. The ranges for ϕF for B/3 sub-bands are shown by dashed lines according to (3.8), while the values
of cosϕF averaged over the sub-bands are indicated by triangles on the horizontal axis.

studying the Faraday rotation for SAR applications [17, 23, 25, 26, 80, 81]. As the relative contribution
of wq is small, the correction for the Faraday rotation is not necessary. This is also the case where the
detection of the Faraday rotation by a single-polarization instrument is difficult.

(b) |p| . |q|: The case of an intermediate range of ϕF , see Figure 3.2(b), that presents a challenge — the
image is both attenuated and distorted by the Faraday rotation; yet if p 6= 0, the “double peak” feature
of wq(ξ) is smeared out by the pwp(ξ) term in (3.19) and may not be easily observable.

(c) |q| & 1: The range of ϕF is wide, see Figure 3.2(c), which is the opposite to case (a). The correction
is required; however, the linearization of cosϕF (u) in (3.8) is not valid. We do not consider this case
hereafter.

The foregoing three cases can be very roughly discriminated by means of the sub-band processing. Assume
that the entire bandwidth B of the signal is split, say, into three sub-bands of bandwidth B/3 each. The
average of cosϕF over a sub-band will be approximately the same for all sub-bands for case (a) and will vary
substantially from one sub-band to another for cases (b) and (c), see Figure 3.2. Lower resolution images
can be obtained by sub-band processing as seen in Appendix I, and a substantial variation between their
intensities can be indicative of the presence of a significant Faraday rotation.

All subsequent analysis in this chapter applies primarily to the intermediate case (b).

3.5 Evaluation of the Faraday rotation effect

If the reflectivity of the target is not known, then in the problem of reconstruction of the Faraday rotation
parameters from the image IF we have one equation [cf. (2.29)]:

IF (y) =

∫
WF (y , z )ν̃(z )dz (3.20)

with two unknowns: WF of (3.15) and ν̃. The information about the Faraday rotation is contained in WF ,
but in order to retrieve this information from (3.20), we should make certain assumptions about the other
unknown, i.e., ν̃. Specifically, we adopt the model of a homogeneous distributed scatterer for ν̃(z ), and
subsequently employ the image autocorrelation analysis. Alternatively, see Section 2.8, one can use point
scatterers: ν̃(z ) =

∑
m νmδ(z − zm) so that (3.20) yields: IF (y) =

∑
m νmWF (y , zm). Considering IF (y)



3.5. EVALUATION OF THE FARADAY ROTATION EFFECT 45

at sufficiently many reference locations y as given data, and taking into account that wp and wq in (3.19)
are known analytically, one can obtain an overdetermined system of equations and solve it in a weak sense
with respect to p and q. In a practical setting, however, the problem with dominant point scatterers is their
availability. That’s why we subsequently focus on the approach suitable for distributed scatterers. Our goal
is to find the parameters p and q that characterize the Faraday rotation, see (3.8) and (3.16). It turns out
that only the ratio of those parameters can be obtained, but it proves sufficient to correct the filter, see
Section 3.6.

We first notice that imaging in azimuth is not affected by the Faraday rotation, see (3.1) and (3.15),
(3.16). Hence, we can exploit the decoupling between azimuth and range due to the factorization of the
GAF. In other words, we can process the image in azimuth ahead of time and subsequently focus on the
one-dimensional imaging with respect to the range coordinate only. To do so, we recast (3.20) as

I(y1, y2) =

∫∫ ∞
−∞

WA(y1, z1)WRF (R0
y , R

0
z )ν̃(z1, z2)dz1dz2, (3.21)

where WA is given by (3.2), (2.37), WRF is given by (3.16), (3.3), (3.17), and the arguments of WA and WRF

in (3.21) emphasize their dependence on the azimuthal and range variables, respectively. We also assume
that the function ν̃(z1, z2) in (3.21) already accounts for the transition from the volumetric reflectivity
ν̃(z ) ≡ ν̃(z1, z2, z3) to the single layer ν̃(z1, z2)δ(z3) on the surface z3 = 0, see Section 4.3 below.

The difference R0
y − R0

z , which enters the argument of WRF via (3.19) and (3.5), does not depend on
either y1 or z1, see formula (A.11) for xn1 = 0. Therefore, equation (3.21) transforms into:

I(y1, y2) =

∫ ∞
−∞

WRF (y2, z2)

∫ ∞
−∞

WA(y1, z1)ν̃(z1, z2)dz1︸ ︷︷ ︸
νR(y1, z2)

dz2, (3.22)

where νR(y1, z2) is already an image in the azimuthal direction, but still retains the meaning of a ground
reflectivity in the range direction. Equation (3.22) can be considered independently for each y1, which
effectively implies one-dimensional imaging in range only. As such, we will henceforth use the plain non-
indexed variables (y, z) instead of (y2, z2), and also drop y1 from the arguments of I and νR. Then, formula
(3.22) yields:

I(y) =

∫ ∞
−∞

WRF (y, z)νR(z)dz, (3.23)

where WRF is, in fact, a single variable function: WRF = WRF (y − z), see (3.19), (3.5).
To model a homogeneous distributed scatterer, we assume that νR(z) has a rapidly decaying autocorre-

lation function (ACF) that we approximate by the delta function:

Vν(z)
def
=

∫ ∞
−∞

νR(y − z)ν̄R(y)dy ≈ σ2δ(z). (3.24)

The quantity σ2 in formula (3.24) is the average backscattering intensity. The approximation in (3.24)
shall be understood in the sense of distributions, so that for any appropriate test function φ(z) we have∫
Vν(z)φ(z)dz ≈ σ2φ(0). The assumption that the ground reflectivity has a short range autocorrelation

function is common in the literature, see, e.g., [83, 84]. In practice, it means that the characteristic scale of
the ACF of (3.24) is much shorter than the range resolution ∆R.

With the help of (3.24), we can easily compute the ACF of the image I(y) of (3.23):∫ ∞
−∞

I(y)Ī(y + h)dy

=

∫ ∞
−∞

∫ ∞
−∞

WRF (y − z)νR(z)dz

∫ ∞
−∞

W̄RF (y + h− z′)ν̄R(z′)dz′dy

=

∫ ∞
−∞

∫ ∞
−∞

WRF (z)νR(y − z)dz
∫ ∞
−∞

W̄RF (z′ + h)ν̄R(y − z′)dz′dy
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=

∫∫∫ ∞
−∞

WRF (z)W̄RF (z′ + h)νR(y − z)ν̄R(y − z′)dzdz′dy

=

∫∫ ∞
−∞

WRF (z)W̄RF (z′ + h)

∫ ∞
−∞

νR(y − z)ν̄R(y − z′)dydzdz′

=

∫∫ ∞
−∞

WRF (z)W̄RF (z′ + h)Vν(z − z′)dzdz′

= σ2

∫ ∞
−∞

WRF (z)W̄RF (z + h)dz. (3.25)

Next, introduce a shorthand notation

w1 ∗ w2 ≡ (w1 ∗ w2)(ζ)
def
=

∫ ∞
∞

w1(ξ)w2(ξ + ζ) dξ,

where w1,2 denote any of the functions wp or wq, and ζ = Bh sin θ/c. Then, using (3.19), we can transform
the integral on the right-hand side of (3.25) as follows:∫ ∞

−∞
WRF (z)W̄RF (z + h)dz = τ2 c

B sin θ

(
p2wp ∗ wp + q2wq ∗ wq + ipq

(
wq ∗ wp − wp ∗ wq

))
. (3.26)

Using contour integration on the complex plane, one can show that the function wp ∗ wp from (3.26) takes
the form

wp ∗ wp =

∫ ∞
−∞

sin ξ

ξ

sin(ξ + ζ)

(ξ + ζ)
dξ = π sinc ζ, (3.27a)

while for the remaining three terms on the right-hand side of (3.26), we have:

−wp ∗ wq = wq ∗ wp =
d

dζ

(
wp ∗ wp

)
, (3.27b)

and

wq ∗ wq = − d

dζ

(
wq ∗ wp

)
= − d2

dζ2

(
wp ∗ wp

)
. (3.27c)

Substituting (3.26)–(3.27) into (3.25), we arrive at∫ ∞
−∞

I(y)Ī(y + h)dy = πDτ2 c

B sin θ
(sinc ζ + 2iQ sinc′ ζ −Q2 sinc′′ ζ), (3.28)

where

D = p2σ2 and Q =
q

p
.

The left-hand side of equation (3.28) represents the data. For any given value of h, the ACF of I(y) can be
evaluated directly from the image, although in practice the integration limits are, of course, finite. The right-
hand side of equation (3.28) is rather a function of h defined by an analytic expression (recall, ζ = Bh sin θ/c);
this function also depends on two unknown parameters, D and Q. By choosing sufficiently many distinct
values of h, we can obtain an overdetermined system of equations that can be solved with respect to D
and Q in a weak sense. For example, one can use an appropriate form of nonlinear least squares, see [85].
We leave the issues of conditioning of the aforementioned overdetermined system and robustness of its least
squares solution for the future study. Instead, in this chapter we show how the reconstructed parameters of
the Faraday rotation p and q can help correct the matched filter and thus improve the image. It is to be
noted that the individual values of p and q can only be determined from D and Q up to a common factor
∼ 1

σ . However, knowing their ratio Q proves sufficient for implementing the filter correction, see Section 3.6.
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3.6 Reducing image distortions due to the Faraday rotation

In the presence of the Faraday rotation, the filter P (t− 2|x − y |/c) does not match the received sig-
nal ψF (t,x ) in (3.10). The distortions created by this mismatch can be reduced by using the fil-
ter PF (t− 2|x − y |/c) that will match ψF (t,x ). The expression for PF (t) involves the parameter Q = q

p

that characterizes the Faraday rotation (see Section 3.5), and is given by [cf. (2.18)]

PF (t) = AF (t)eiω0t, where AF (t) = χτ (t)eiαt
2
(

1 +
2Q

τ
t
)
. (3.29)

Using formulae (3.6) and (3.8), the factorization (3.15), and the corrected filter given by the conjugate of
(3.29), we obtain the following expression for the new range ambiguity function [cf. (3.3) and (3.16), (3.17)]:

W̃RF (y , z ) =

∫
χ

AF (u0
y )A(u0

z )
(
p+

2q

τ
u0
z

)
dt. (3.30)

Knowing that tn = 0 for n = 0 and performing the integration in (3.30), we get instead of (3.19):

W̃RF (ξ) = pτ
(

(1 +Q2)wp(ξ) + 2iQwq(ξ)− 2Q2wqq(ξ)
)
,

where the new dimensionless function wqq(ξ)
def
= wq(ξ)/ξ has a removable singularity at ξ = 0 if we set

wqq(0) = 1/3.

To demonstrate the superiority of the corrected ambiguity function W̃RF over its unmodified form (3.19),
we plot the corresponding normalized range intensity PSFs

|WRF (ξ)|2

max |WRF |2
and

|W̃RF (ξ)|2

max |W̃RF |2
(3.31)

for several values of Q = q/p, see Figure 3.3. The dashed vertical lines indicate a 3dB drop of intensity from
the maximum. It can be readily seen that the resolution is improved in all cases, however, a more significant
improvement is observed for larger Q, as expected.

3.7 Discussion

In the current chapter, we have introduced a mathematical model and analyzed the effect of the Faraday
rotation on single-polarization transionospheric SAR imaging. Unlike in all other studies of the Faraday
rotation in the SAR literature (that exploit either single-polarization or polarimetric framework), our analysis
takes into account the variation of the rotation angle along the interrogating chirp, and offers a venue for
correcting the matched filter in those cases where the impact of the Faraday rotation on the image is deemed
detrimental. Specifically, we first propose an approach to rough detection of the Faraday rotation based on
sub-band image processing. Then, we employ the image autocorrelation analysis to relate the parameters of
the Faraday rotation defined within our mathematical model to certain observable quantities. This allows
us to reconstruct the foregoing parameters and subsequently correct the matched filter. The corrected filter
is shown to reduce the distortions of the image due to the Faraday rotation. This correction is applied on
top of the corrections developed previously for the dispersive propagation, see [8] and Chapter 2.

Another important aspect of the system is the anisotropy of the target. Scattering of the polarized radio
waves off an anisotropic target material is the topic of Chapter 4.
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Figure 3.3: The original and corrected range intensity PSF curves (3.31) and -3dB resolution for different
values of Q.



Chapter 4

A linearized inverse scattering
problem for polarized waves and
anisotropic targets

4.1 Background

This chapter is based on [2]. Its objective is to analyze the scattering of the linearly polarized electromagnetic
waves off anisotropic targets in the framework of the first Born approximation. This analysis will help relate
the observable quantities, i.e., the characteristics of the scattered field, to the physical properties of the
target, such as the permittivity and conductivity of its composition material. Hence, it will generalize to the
vector case the relations between the received field and the ground reflectivity function obtained in Chapter 2
for the scalar setting. In the future, the results of this chapter may help build a full-fledged SAR ambiguity
theory for multi-channel imaging.

Appendices M through O correspond to Chapter 4.

4.1.1 Direct and inverse scattering problems

Maxwell’s equations of electromagnetism in CGS units [79,86]:

1

c

∂H

∂t
+∇×E = 0 ,

1

c

∂D

∂t
−∇×H = −4π

c
(j + j (ex)),

∇ ·H = 0,

∇ ·D = 0,

(4.1)

govern the electromagnetic field driven by the extraneous electric current with the density j (ex) = j (ex)(x , t).
In system (4.1), c is the speed of light in vacuum, E and H denote the vectors of the electric and magnetic
field, respectively, and D is the vector of electric induction, which is related to the electric field via the
permittivity tensor ε = ε(x ) (hereafter, the dot “ · ” denotes the tensor convolution):

D = ε ·E . (4.2)

The total current in system (4.1) is a sum of j (ex) and the conductivity current j given by

j = σ ·E . (4.3)

The quantity σ in (4.3) denotes the conductivity tensor, which may also vary in space: σ = σ(x ). We
are assuming that the current j (ex) does not lead to the accumulation of the extraneous electric charge, so
that the second steady-state equation in system (4.1) (the Gauss law of electricity) is homogeneous. The
magnetic permeability is assumed equal to one (for the range of phenomena of interest) so that there is no
need to distinguish between the magnetic field and magnetic induction.

49
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Let E (inc) and H (inc) denote the incident fields that satisfy system (4.1) in vacuum:

1

c

∂H (inc)

∂t
+∇×E (inc) = 0 ,

1

c

∂E (inc)

∂t
−∇×H (inc) = −4π

c
j (ex),

∇ ·H (inc) = 0,

∇ ·E (inc) = 0.

(4.4)

Then, the total fields that solve (4.1) can be represented as

E = E (inc) + E (sc) and H = H (inc) + H (sc), (4.5)

where the corrections E (sc) and H (sc) shall be attributed to the variation of ε and σ against the background
vacuum values ε = I (identity tensor) and σ = 0 , respectively. Those corrections are referred to as the
scattered fields. The direct electromagnetic scattering problem is the problem of determining the scattered
fields E (sc) and H (sc) if ε = ε(x ) and σ = σ(x ) are given. The inverse electromagnetic scattering problem
rather consists of determining the variable electric permittivity ε = ε(x ) and conductivity σ = σ(x ) under
the assumption that the scattered fields E (sc) and H (sc) are available. The region of space where ε = ε(x )
and σ = σ(x ) are to be reconstructed is called the target. The inverse scattering problem may have multiple
solutions.

4.1.2 The first Born approximation

In the literature, the foregoing scattering problems are often studied using second order governing equa-
tions for the individual fields. Moreover, the inverse scattering problem can be simplified by means of the
linearization based on the first Born approximation, see [67, Chapter XIII]. It is typically used when the
scattered field is much smaller than the incident field, i.e., when the scattering is weak. This, in turn, can
be expected to be the case when the deviation of the material parameters at the target from the background
parameters in vacuum is small. In Appendix M, we show that when the target material is isotropic, i.e.,
when both the permittivity and conductivity tensors are spherical, the governing equation for the scattered
electric field under the first Born approximation becomes [see equation (M.8)]:

1

c2
∂2E (sc)

∂t2
−∆E (sc) = ν

∂2E (inc)

∂t2
− 4πσ

c2
∂E (inc)

∂t
, (4.6)

where the scalar quantity ν is the ground reflectivity function [see formula (M.7)]:

ν(x ) =
1

c2
− 1

v(x )2
. (4.7)

In formula (4.7), v = v(x ) is the local propagation speed in the material. More rigorously, a solution by
means of the first Born approximation can be obtained by truncating the corresponding Neumann series
after its linear term [6, Chapter 6].

In the literature, the Born approximation (named after Max Born) is often discussed along with another
approximation, named after Sergei Mikhailovich Rytov, see, e.g., [67, Chapter XIII] and [87,88]. It is known
that the Rytov approximation better describes the transmitted waves, i.e., the field inside the target material,
whereas the Born approximation is better suited for the reflected waves, i.e., for the scattered field in vacuum
(see, e.g., [88, 89] and references therein). We will focus on the first Born approximation for the rest of this
chapter because it provides a linearized scattering model for the field reflected off the target into the vacuum
region, which is convenient for SAR applications.

We also note that in the Cartesian coordinates the vector equation (4.6) decouples into three independent
scalar wave equations for the individual field components. This enables studying the scattering problems in
the scalar formulation [5], provided that the polarization of the field is not important.

4.1.3 Scalar vs. polarimetric SAR

As seen in Chapter 2, many currently operating SAR sensors use linear chirps in the form given by (2.18),

P (t) = A(t)eiω0t, where A(t) = χτ (t)eiαt
2

,
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as interrogating waveforms [5]. In this formula, ω0 is the carrier frequency, χτ (t) is the indicator function of
the interval [−τ/2, τ/2], and the modulating function A(t) is varying slowly compared to the fast oscillation
eiω0t.

Let us first disregard the polarization and identify the pulse (2.18) with the right-hand side of the scalar
counterpart of equation (M.5). This right-hand side shall be interpreted as the time derivative of a given
Cartesian component of the electric current at the emitting SAR antenna, which is taken as a point source1

located at x ∈ R3. Then, the corresponding component of the incident field due to the emitted chirp (2.18)
is given by the standard retarded potential of the d’Alembert operator:

E(inc)(z , t) =
1

4π

P (t− |z − x |/c)
|z − x |

, (4.8)

which is (2.21) using new notation. It should be noted that we ignore the units of the electric field and
currents because the governing equations are linear in E. When substituting E(inc) of (4.8) into the right-
hand side of equation (4.6), we can leave A( · ) out of the differentiation w.r.t. t, because A( · ) varies slowly.
Subsequently, a solution of equation (4.6) can be obtained with the help of the Kirchhoff integral (2.23).
In particular, the scattered field back at the antenna x is given by the following expression, a modification
of (2.25):

E(sc)(x , t) ≈ − ω2
0

16π2

∫∫∫
|x−z |≤ct

ν̂(z )

|x − z |2
P (t− 2|x − z |/c) dz

= − ω2
0

16π2

∫∫∫
|x−z |≤ct

ν̂(z )

|x − z |2
A (t− 2|x − z |/c) eiω0(t−2|x−z |/c)dz ,

(4.9)

where

ν̂(z )
def
= ν(z ) + i

4πσ(z )

ω0c2
, (4.10)

which differs from (M.7) due to the right hand term in (4.6). According to (4.9), the scattered field E(sc)

can be interpreted as the result of application of a Fourier integral operator (FIO), see, e.g., [6, 68–70], to
the complex reflectivity function ν̂(z ) of (4.10) that combines the variation of the propagation speed c, see
(4.7), and the variation of the conductivity σ. As discussed in Section 2.3.1, this FIO can be approximately
inverted by applying a matched filter to E(sc) and accumulating the information due to multiple interrogating
pulses (2.18) emitted from and received by the antenna at different locations along its trajectory. This is
the procedure of SAR signal processing [5,6,27]; it allows one to reconstruct ν̂(z ), i.e., to obtain the image.
Mathematically, this procedure is similar to application of the adjoint operator, which would have coincided
with the true inverse of the FIO (4.9) if the latter were a genuine Fourier transform.

In general, ν̂(z ) is a function of three variables, because z ∈ R3. As, however, the synthetic antenna
is aligned with the flight trajectory or orbit, which is one-dimensional, the conventional SAR data collec-
tion algorithm (in the case of a monostatic non-interferometric sensor) can generate only two-dimensional
datasets, see [6]. At the same time, the primary task of all practical SAR systems is imaging of the surface
of the Earth from aircraft or from satellites. The introduction of the Earth’s surface as the geometric loca-
tion (i.e., locus) of all the targets naturally eliminates the third coordinate (i.e., fixes the altitude) and hence
makes the dimension of the dataset equal to that of the desired image. Mathematically, this corresponds to
considering the reflectivity function (4.10) in the form

ν̂(z ) ≡ ν̂(z1, z2, z3) = ν̂(z1, z2)δ(z3), (4.11)

i.e., in the form of a single layer on the surface, where z1 and z2 are the two horizontal coordinates and
z3 is the vertical coordinate [5]. The resulting image then reconstructs ν̂(z1, z2), i.e., yields the complex
reflectivity function (4.10) on the surface of the Earth as a function of the two horizontal coordinates.

In real applications, however, disregarding the polarization may not be appropriate, as the field is always
polarized, and its polarization may change due to the interaction with the target.2 Even in the simplest

1Actual SAR antennas have a special structure that enables narrowly directed radiation patterns [6].
2It may also change due to the propagation in a chiral medium, e.g., the magnetized ionosphere, which is considered in

Chapter 3.
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possible scenario, when a linearly polarized incident wave impinges on a plane interface between the vacuum
and an isotropic target material, the polarization angle, generally speaking, tilts. A more sophisticated
target material gives rise to a broader variety of the possible changes in polarization of the scattered field,
see Section 4.2. Mathematically, scattering off interfaces corresponds to a non-smooth permittivity ε(x )
and/or conductivity σ(x ), when the regions of their regular behavior (the vacuum and the target) are
separated by a surface, at which these quantities (tensors) undergo jumps. Special boundary conditions are
required at this surface for a proper description of the scattering mechanism.

The methodology of SAR imaging that takes into account the polarization of interrogating waves is
known as polarimetric SAR, see [25, 90]. As the antenna is typically far away from the target, by the time
the incident pulse reaches the target it can be sufficiently accurately approximated by a transverse plane
wave. Likewise, the scattered field can be effectively thought of as a transverse plane wave by the time it
reaches the antenna. Therefore, even though the field vectors in R3 are three-dimensional, it is sufficient to
consider only their two transverse components if the third coordinate axis is chosen parallel to the direction
of propagation. Accordingly, there are two independent linear polarizations for either incident or scattered
wave.

At its current state, the theory of polarimetric SAR imaging is different from the scalar theory in that
it exploits a completely phenomenological framework; the polarimetric SAR literature has been dominated
by the phenomenological approach since the dissertation by Huynen [91]. Namely, the vector of the incident
electric field that has two (transverse) components and the vector of the scattered electric field that also has
two components are considered related by means of a formal 2× 2 matrix S:

E (sc) = SE (inc), (4.12)

called the Sinclair scattering matrix. The entries of the scattering matrix S are usually not related to any
physical characteristics of the target; they are rather introduced as the coefficients of the transformation
between E (inc) and E (sc). This is precisely what the phenomenological nature of the approach of [91] means.

Note also that as the incident and scattered waves propagate in different directions, they will be repre-
sented in different coordinate systems in formula (4.12), and hence the scattering matrix S incorporates not
only the transformation of the field per se, but the change of the coordinates as well. Moreover, as both
fields related by (4.12) are assumed transverse plane waves, they are attributed to different spatial locations
— the target for the incident field and the receiving antenna for the scattered field. In the time domain,
which is common for SAR applications [6], this would have also implied that the incident and scattered field
were evaluated at different moments in time.

Note that using formula (4.9) one can also obtain a scalar counterpart of relation (4.12). Consider a
point scatterer of complex magnitude ν̂ located at z0 so that ν̂(z ) = ν̂δ(z − z0). Then, instead of (4.9), we
can write [with the help of (4.8)]:

E(sc)(x , t) ≈ −ω
2
0

4π

ν̂

|x − z0|︸ ︷︷ ︸
S

E(inc)(z0, t− |x − z0|/c). (4.13)

However, unlike the reflectivity function (4.10) that enters into (4.13) and (4.9), the entries of the scattering
matrix S of (4.12) do not directly represent any physics-based scattering mechanism or material charac-
teristics of the target; they are introduced just as the coefficients of a linear transformation. Subsequently,
various target decomposition techniques, see Section 4.4 and [25, Chapters 4, 6, 7] for more detail, attempt to
attribute some physical properties of the target (e.g., its symmetry, convexity, etc.) to certain combinations
of the entries of the observed matrix S.

For SAR applications, one often considers two basic cases of a linearly polarized incident field: horizontal
polarization corresponds to the electric field vector normal to the plane of incidence, whereas vertical polar-
ization corresponds to the electric field vector parallel to the plane of incidence. All other polarizations can
be obtained as linear combinations of these two. Accordingly, the entries of the scattering matrix (that are
also referred to as channels) are commonly denoted as

S =

[
SHH SHV

SVH SVV

]
, (4.14)
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where for each matrix entry, the first and second letter of the subscript denote the polarization of the
scattered and incident field, respectively. In formula (4.14), SHH and SVV are the co-polarized channels, and
SHV and SVH are the cross-polarized channels. Fully polarimetric SAR sensors produce four different images
— one per channel.3

In the frequency domain, the components of the electric field vector become complex, and instead of
the retarded time, as in formula (4.13), the solution acquires the corresponding phase factor. The Sinclair
matrix can then be represented as follows:

S = eiφ0

[
|SHH| |SHV|eiφHV

|SVH|eiφVH |SVV|eiφVV

]
, (4.15a)

where φ0 is the common phase (also called absolute phase) that basically yields the distance (or time) that
the scattered wave travels between the target and the receiving antenna, and φHV, φVH, and φVV are the
relative phases. In particular, φVV is called the co-polarized phase difference (CPD). The absolute phase φ0

is the principal quantity of interest in the case of the SAR imaging by means of a scalar field, see Chapter 2.
In the vector case, representation (4.15a) clearly shows that the complex-valued Sinclair scattering matrix

offers a total of seven additional degrees of freedom — four amplitudes and three relative phases — on top
of the scalar case. Consequently, eight independent quantities (1+7) associated with every location yield as
much information as one can obtain from a polarimetric SAR image (i.e., four complex-valued images, one
per channel) regardless of what the actual target is.

We should also mention that extracting the common phase φ0 the way it is done in formula (4.15a)
removes a certain degree of arbitrariness that otherwise exists in the definitions. Indeed, the scattering
mechanism at the target can be such that every polarization undergoes a phase shift upon reflection, see
Section 4.2. In this case, instead of (4.15a) we would have

S = eiφ̃0

[
|SHH|eiφ̃HH |SHV|eiφ̃HV

|SVH|eiφ̃VH |SVV|eiφ̃VV

]
def
= eiφ̃0 S̃, (4.15b)

where the entries of the matrix represent the actual complex reflection coefficients, and φ̃0 accounts for the
travel distance. The relation between the phases in (4.15a) and (4.15b) is obvious: φ0 = φ̃0 + φ̃HH, but
having only the overall matrix S as an observable, one cannot tell unambiguously how to split φ0 into φ̃0

and φ̃HH. Therefore, it is common in the literature to adopt normalization (4.15a) that keeps the HH entry
of the matrix real.

4.1.4 Objectives of the chapter

Our primary objective is to build a material-based linearized scattering model for the case of vector propaga-
tion. In other words, using the first Born approximation we would like to relate the entries of the scattering
matrix S to the material properties of the target (its permittivity and conductivity), similarly to how one
defines the ground reflectivity function in the scalar case, see formulae (4.7), (4.10), and (4.13).

Note that in the framework of the first Born approximation, one can formulate both a direct and inverse
scattering problem. The direct problem consists of obtaining the scattered field E (sc), given the incident field
E (inc) and the material parameters ε and σ, and assuming that the scattering is weak (see Section 4.1.2).
Of our primary interest is the corresponding linearized inverse scattering problem, which consists of defining
the channels (4.14) as functions of the material parameters, SHH = SHH(ε,σ), SVV = SVV(ε,σ), SHV =
SHV(ε,σ), and SVH = SVH(ε,σ), so that ε and σ can subsequently be reconstructed given the fields E (inc)

and E (sc) in formula (4.12), and again, assuming that the scattering is weak.
The desired linearized scattering model shall be minimally complex in terms of the structure of the

tensors ε and σ. This means that it should not aim at more than recovering the four complex reflection
coefficients contained in the matrix S̃ of (4.15b), which is a total of eight degrees of freedom, because what
the polarimetric SAR methodology is capable of detecting is even one degree of freedom less, see formula
(4.15a).

3In some inversion algorithms, the processing is not done channel-by-channel, but rather couples the channels, which may
provide additional benefits, see, e.g., [92].
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Availability of such a model may help develop the radar ambiguity theory for the polarimetric case
similarly to how it is done in the scalar case, see [5], [6, Chapters 5 and 11], and Chapter 2. Besides, it may
prove useful for the material identification SAR (miSAR) applications.

The application of the first Born approximation in the vector case is similar to that in the scalar case
(discussed in Section 2.3.1). Replacing the total electric field E by the incident field E (inc) on the right-hand
side of equation (M.4) and taking into account the Gauss laws ∇ ·D = 0 and ∇ ·E (inc) = 0, we obtain:

1

c2
∂2E (sc)

∂t2
−∆E (sc) = −ε− I

c2
· ∂

2E (inc)

∂t2
− 4πσ

c2
· ∂E

(inc)

∂t
. (4.16)

The main difference between this equation and its counterpart for the isotropic case, equation (4.6), is that
the material characteristics in equation (4.16) are tensors rather than scalars. This implies that generally
speaking, the vector equation (4.16) cannot be decoupled into the independent scalar equations for the indi-
vidual field components. Moreover, studying the scattering of electromagnetic waves off interfaces requires
special boundary conditions in addition to the governing equations themselves. Those boundary conditions,
mentioned earlier, play a key role in the construction of the first Born approximation for the case of vector
fields, see Section 4.2.

In Section 4.2, we carefully develop and analyze the first Born approximation as it applies to scattering off
a hierarchy of target materials. Starting with the simplest case of an isotropic dielectric, we gradually increase
the complexity of the material by allowing for the anisotropy of ε and including the weak conductivity σ
(anisotropic as well) so that finally we reach the same number of the degrees of freedom as in (4.15a). The
resulting material is a uniaxial crystal (i.e., a birefringent medium) with the conductivity tensor that is also
uniaxial, and with both axes allowed to have arbitrary directions with respect to the incidence plane and with
respect to one another. We prove that the scattered field in vacuum obtained in this linearized framework
approximates the true reflected field that one can obtain with no use of the Born approximation. We also
obtain a necessary and sufficient condition for the existence of a solution to the foregoing linearized inverse
scattering problem. Under this condition, the scattering matrix (4.15a) can be obtained by appropriately
choosing the permittivities, conductivities, and angles that define the material and the orientation of its
optical axis with respect to the plane of incidence.

The second objective of the current chapter is related to the first one. Namely, in the linearized framework
that we have adopted for describing the scattering, a formal mathematical justification is needed for the
possibility of taking the ground reflectivity function in the form of a single layer on the surface, see formula
(4.11).

As of yet, the transition from the entire half-space occupied by the target material to the target material
concentrated only on the surface has been motivated by the mere convenience of having the third coordi-
nate removed from the radar dataset,4 see the discussion around equation (4.11). This, however, is not a
rigorous argument. One rather needs to prove that the linearized scattering off a material half-space can be
equivalently reformulated as the linearized scattering off a layer of monopoles at its surface only.

In other words, we arrive at the following inverse source [93] problem: for the linearized scattering off a
half-space, find an equivalent surface reflectivity function of type (4.11) that would yield the same scattered
field in the vacuum region. In Section 4.3 of the paper, we solve this inverse source problem and show
that in the scalar case the resulting “density” ν̂(z1, z2) indeed appears proportional to the target reflectivity
function (4.10) on the surface. Moreover, we formulate and solve a similar inverse source problem in the
vector case as well. With the polarization taken into account, the scattered field in the vacuum region can
also be represented as a single-layer surface potential with tensor densities proportional to the jumps of the
material characteristics at the interface. These topics are addressed in Section 4.3, whereas in Section 4.4
we discuss the relation between our analysis and polarimetric target decomposition.

The main notations that will be used hereafter are explained in Table 4.1.

4It is also supported by physical reasoning in the literature. For the microwave carrier frequencies ω0, the penetration depth
of the radar signals into the ground is very small, and all the reflections must be those off the surface. However, the first Born
approximation may lead to a certain inconsistency for the ground reflectivity function in the form (4.11). Indeed, the single
layer radiates in both directions, vacuum and material, which means that the scattered field actually penetrates into the ground.
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4.2 Hierarchy of scattering models

Parameter name Notation Relations Reference
Dielectric tensor and its
reciprocal

ε,η D = ε ·E ; ε · η = I (4.17), (4.50)

Isotropic permittivity (or
dielectric constant)

ε, ε(z) ε(z) = 1 + θ(z)(ε− 1) (4.22)

Geometry and parameters of
uniaxial dielectric tensor

ε⊥, ε‖, ∆ε,
α, β, γ

∆ε = ε‖ − ε⊥,

α2 + β2 + γ2 = 1

(4.47)–(4.49)

Entries of the reciprocal
dielectric tensor

ηij ,
i, j = x, y, z

ηii = 1/εii;
ηij = −εij for i 6= j

(4.51)

Conductivity tensor σ j = σ ·E (4.3)
Isotropic conductivity σ j = σE (4.78)
Geometry and parameters of
uniaxial conductivity tensor

σ⊥, σ‖, ∆σ,
ασ, βσ, γσ

∆σ = σ‖ − σ⊥,

α2
σ + β2

σ + γ2
σ = 1

Section 4.2.5.1

Modified permittivity in
frequency domain

ε̃ ε̃ = ε+ i
4π

ω
σ (4.80)

Small parameter for the first
Born approximation

κ ‖ε− I‖ ∼ κ, ‖σ‖ ∼ κω,
|u(sc)| ∼ κ|u0|

(4.21), (4.24c)

Differential operator describing
scattering, right-hand side
parameter

L̂, r L̂ =
d2/dz2 + q2

q2
(4.27)

Electromagnetic field, its
components, and amplitudes

U ;
u(inc), u(sc);
u0, u(z)

U = u(inc) + u(sc),
u(inc) = u0e

i(qz+Kx),
|u(sc)| ∼ κ|u0|

(4.23)–(4.26)

Undetermined coefficients for a
solution in two domains

A,B,C u(sc)(z) =
(Az +B)u0e

iqz for z > 0;
u(sc)(z) =
Cu0e

−iqz for z < 0

(4.32)

Free space and material sides of
the interface at z = 0

(F ), (M) (F ) ≡ (z = −0)
(M) ≡ (z = +0)

(4.19),
Figure 4.1

Boundary condition parameter R
du

dz

∣∣∣∣
(M)

=
du

dz

∣∣∣∣
(F )

+Ru0 (4.33), (4.34)

Wave vector and its components k. K, q k2 = K2 + q2; K = k sin θi (4.20), (4.40),
Figure 4.1

Polarization ratio Q SVV = SHHQ, (4.44), (4.73),
(4.74), (4.76),
(4.82),
Figure 4.2

Table 4.1: Key notations and their relations to be used in Chapter 4 and associated appendices.

4.2.1 Roadmap

In Section 4.2, we present a detailed derivation of the first Born approximation for the scattering of a linearly
polarized electromagnetic wave off a material half-space. We consider several types of materials: a perfect
isotropic dielectric, a perfect birefringent (uniaxial) dielectric, and lossy isotropic and birefringent dielectrics.
In each case, our first goal is to determine the number of degrees of freedom associated with a given material
in the linearized direct scattering problem. This number is determined by the functional dependence of the
reflection coefficients on the material parameters.

In Section 4.2.3, the scattering coefficients are derived for the isotropic case. First, the Maxwell equations
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are transformed to the frequency domain, and the dependence of their solution on the tangential variables is
factored out using the uniformity of the formulation along the interface. Then, the equations are linearized
and reduced to a second-order ordinary differential equation (ODE) that governs the propagation of the
scattered field in the direction normal to the interface. This equation is supplemented by the radiation
conditions at infinity and the matching conditions at the interface. It turns out that the key difference
between the horizontal and vertical polarization is precisely in the interface conditions. For the horizontal
polarization, those conditions reduce to the continuity of the solution itself and its first derivative across the
interface. For the vertical polarization, the condition for the first derivative becomes inhomogeneous, and
this derivative undergoes a jump across the interface. Accordingly, the reflection coefficients are different for
two polarizations, while the dielectric permittivity provides a single degree of freedom for this setting.

We note that the first Born approximation in the scalar (i.e., isotropic) case has been extensively studied
in the literature, and also used in the context of SAR applications in Chapter 2. The reason we present its
detailed analysis in the current chapter is two-fold. On one hand, it allows us to build the framework and
introduce the solution methodology that subsequently applies to the cases with anisotropy and/or Ohmic
losses. On the other hand, in its own right it helps us emphasize a very important distinction between
the horizontal and vertical incident polarizations. In the case of a horizontal polarization, the linearized
interface condition is homogeneous, and this is precisely the case that has received most of the attention in
the literature, see, e.g., [87]. For the vertical polarization though, the linearized interface condition becomes
inhomogeneous and accordingly, the solution given by the first Born approximation is different even though
the linearized governing equation is the same as in the case of a horizontal polarization.

In the lossless anisotropic case (Section 4.2.4), the polarizations are no longer independent, and Maxwell’s
equations reduce to a system of two coupled ODEs that govern the components of the electric and magnetic
field normal to the plane of incidence. For this system, the first Born approximation appears very convenient
to implement in two stages: first the equations are uncoupled, and then the resulting individual equations
are linearized. The end result depends on the polarization of the incident wave. In each case (vertical
or horizontal incident polarization), one of the uncoupled equations describes the co-polarized scattering
and the other describes the cross-polarized scattering. The form of the resulting equations and interface
conditions turns out to be similar to the isotropic case, although the actual expressions for the reflection
coefficients are not the same and contain additional degrees of freedom.

In the case of a lossy material (Section 4.2.5), we show that the presence of a weak conductivity is
equivalent to having a small imaginary part in the overall complex permittivity, which, in turn, makes
the small parameter of the first Born approximation complex. This observation significantly simplifies the
treatment of the lossy materials. In particular, the functional representation of the imaginary part of the
scattering matrix turns out to be the same as that of the real part. Hence, the anisotropic conductivity
yields the same number of degrees of freedom as does the anisotropic permittivity.

In Table 4.2, we provide the number of degrees of freedom and list the independent material parameters
for each of the cases we have considered.

Having identified the degrees of freedom that characterize every material included into our analysis, we
move on toward addressing the next goal of this chapter, which is to solve the corresponding linearized inverse
scattering problem. Specifically, we would like to see whether a given scattering matrix can be obtained by
adjusting the available degrees of freedom, i.e., by appropriately choosing the characteristics of the target
material. In Theorem 1, we furnish a necessary and sufficient condition for the solvability of this inverse
problem in the case of a lossless birefringent material, and in Corollary 1 we extend this result to the case
of a lossy anisotropic material.

4.2.2 Problem of reflection of a plane wave by a material half-space

We consider the reflection of a monochromatic plane wave off a material half-space with permittivity tensor ε
and conductivity tensor σ. Since all the fields depend on time as e−iωt, where ω is the frequency, we conduct
the analysis in the frequency domain. For transverse electromagnetic waves with no extraneous currents,5

5The excitation in the problem will be provided by incident plane waves.
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Model of scatterer Independent
material
parameters

Non-zero
reflection
coefficients

Max.
num-
ber of
d.o.f.

Sec-
tion
#

Perfect isotropic dielectric ε HH, VV 1 4.2.3
Lossy isotropic dielectric ε, σ

:::
HH,

:::
VV 1 4.2.5.2

Perfect uniaxial dielectric,
interface in basal plane

ε⊥, ε‖ HH, VV 2 4.2.4.5

Lossy uniaxial dielectric with
spherical conductivity tensor,
interface in basal plane

ε⊥, ε‖, σ :::
HH,

:::
VV 3 4.2.5.3

Perfect uniaxial dielectric,
arbitrary direction of optical axis

ε⊥, ε‖, α, γ HH, VV,
HV, VH

4 4.2.4.7

Lossy uniaxial dielectric,
arbitrary direction of optical axis

ε⊥, ε‖, α, γ,
σ⊥, σ‖, ασ, γσ

:::
HH,

:::
VV,

:::
HV,

:::
VH

8 4.2.5.5

Table 4.2: Overview of scattering models and their properties: material parameters, non-zero reflection
coefficients, and maximum number of degrees of freedom. The wavy underline in the third column means
that the values may be complex.

the unsteady equations of system (4.1) with equation (4.3) taken into account reduce to

∇×E = ikH and ∇×H = −ikD +
4π

c
σ ·E , (4.17)

where k = ω/c. Equation (4.2) and the Gauss laws of electricity and magnetism (steady-state equations
in (4.1)) keep their form in the frequency domain.

Denote x = (x, y, z) ∈ R3 and assume that the half-space z < 0 is occupied by vacuum, whereas the
half-space z > 0 is filled with the material. The plane of incidence is defined as to contain the wave vector
of the incident wave and the normal to the interface z = 0; with no loss of generality we take it as the
(x, z) plane, see Figure 4.1. The problem is essentially two-dimensional, as the wave vectors of the incident,
reflected, and transmitted waves all belong to the plane of incidence. Hence, the electromagnetic fields do
not depend on the y coordinate (although the vectors may have y components).

Then, system (4.17) takes the form:

−∂Ey
∂z

= ikHx, −∂Hy

∂z
=− ikD̃x,

∂Ex
∂z
− ∂Ez

∂x
= ikHy,

∂Hx

∂z
− ∂Hz

∂x
=− ikD̃y, (4.18)

∂Ey
∂x

= ikHz,
∂Hy

∂x
=− ikD̃z,

where D̃x, D̃y, and D̃z are components of the vector D̃ = ε ·E + (4πi/ω)σ ·E . In the free space (vacuum),
we have ε = I and σ = 0 .

At the interface z = 0, the following boundary conditions are imposed on the tangential components of
the electric and magnetic field [79,94]:

Ex|(F ) = Ex|(M) , Ey|(F ) = Ey|(M) , (4.19a)

Hx|(F ) = Hx|(M) , Hy|(F ) = Hy|(M) . (4.19b)

The subscripts (F ) and (M) in formulae (4.19) denote the free space (z = −0) and material (z = +0) side
of the interface, respectively.

The incident field in formulae (4.5) is chosen as a plane wave:

(E (inc),H (inc)) = (E
(inc)
0 ,H

(inc)
0 )ei(qz+Kx), (4.20)
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K

α

γ

q

β

x

c = (α, β, γ)

z y

interface

k = (K, 0, q)

free space

material

plane of incidence

Figure 4.1: Schematic for the scattering problem off an anisotropic half-space. The vector k = (K, 0, q) is
the incident wave vector, see formula (4.20). The vector c = (α, β, γ) is a unit vector along the optical axis,
see Section 4.2.4. Note that α, β, and γ denote the direction cosines rather than the actual angles.

where K is the common horizontal wavenumber for all plane waves in the problem, and

q = (k2 −K2)1/2

is the vertical component of the incident wave vector, see [79,94,95].
In addition to the interface conditions (4.19) for the total field, the scattered field (E (sc),H (sc)) should

also satisfy the radiation conditions as z → ±∞, see formulae (4.28).
In the textbook approach to problem (4.18)–(4.19) (see, e.g., [67,79]), the incident field (4.20) is restricted

to the free space, while system (4.18) is solved with respect to the scattered field, and its solutions are found
separately for the vacuum and material half-spaces. These solutions, called the reflected and transmitted
field, respectively, are combined with the incident field, and then matched at the interface using boundary
conditions (4.19). A comprehensive account of this approach can be found, e.g., in [94]. For the particular
case of a perfect isotropic dielectric, amplitude and direction of the reflected and transmitted field are given
by the classic Fresnel’s equations and Snell’s law; these expressions (see, e.g., [67,79]) are valid for arbitrary
values of ε. Besides this, various simplifications can be considered depending on the specific structure of ε
and σ [95].

As indicated in Section 4.1.4, our goal is to analyze the linearized scattering case. Therefore, in the
material domain z > 0 we assume that

‖ε− I‖ ∼ κ and ‖σ‖ ∼ κω, (4.21)

where κ is a small parameter, so that the scattering is weak. To study the existence of a solution to the
resulting inverse scattering problem, we will use the first Born approximation to obtain a series of direct
scattering solutions for a hierarchy of settings, starting from the simplest case, i.e., that of a perfect isotropic
dielectric. The Fresnel and other exact solutions, linearized according to (4.21), will be used for validation
of the solutions obtained with the help of the first Born approximation.
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4.2.3 The first Born approximation for a perfect isotropic dielectric

4.2.3.1 Governing equations.

Assume that in the material the dielectric tensor is spherical, which means that the permittivity is scalar,
and that the conductivity is zero. Since σ = 0 , the components of the vector D̃ in (4.18) can be replaced
by those of D . Since ε = ε(z)I in the entire space, the vectors D and E are proportional, i.e.,

Di(x, z) = ε(z)Ei(x, z) for i = x, y, z,

where
ε(z) = 1 + θ(z)(ε− 1), (4.22)

θ(z) is a unit step function, and ε > 1 is the permittivity in the material domain z > 0, see [67, 79]. In
this case, the equations for the variables Ex, Ez, Hy and for Hx, Hz, Ey in system (4.18) are decoupled. This
means that system (4.18) admits a solution with Ex = Ez = Hy = 0, which is called horizontal polarization,
and another solution with Hx = Hz = Ey = 0, called vertical polarization. Each of these solutions is
governed by the scalar Helmholtz equation:

∂2U

∂x2
+
∂2U

∂z2
+ ε(z)k2U = 0, (4.23)

where U(x, z) represents any nonzero Cartesian component of E or H .
To build the first Born approximation for the scattering of a plane incident wave in either of the two basic

polarizations defined above, we represent the total field U in (4.23) as a sum of the incident and scattered
fields as in (4.5):

U = u(inc) + u(sc), (4.24a)

take the incident field in the form (4.20):

u(inc) = u0e
i(qz+Kx), (4.24b)

and assume that
|u(sc)| ∼ κ|u0|, (4.24c)

where the small parameter κ is introduced in (4.21). In doing so, both the incident and scattered components
of the field occupy the entire space. Substituting equality (4.24a) into (4.23) and taking into account that
u(inc) satisfies the same equation (4.23) but with ε = 1, we arrive at the equation for u(sc):

∂2u(sc)

∂x2
+
∂2u(sc)

∂z2
+ k2u(sc) = −(ε(z)− 1)k2(u(inc) + u(sc)). (4.25)

The first Born approximation consists of disregarding the second-order term (ε− 1)u(sc), see formulae (4.21)
and (4.24c), on the right-hand side of equation (4.25). Moreover, as everything in our formulation is uniform
along the plane (x, y), see Figure 4.1, the dependence of the solution on x and y must be the same in the
entire space, see [79, Chapter X]. This, in particular, implies that the horizontal component of the wave
vector is the same for both the incident field (4.20), (4.24b) and the scattered field, so that we can take

u(sc) = u(z)eiKx. (4.26)

Equation (4.26) helps us reduce (4.25) to the following equation for u(z):

1

u0
L̂u = g(z) ≡ −rθ(z)eiqz, L̂

def
=

1

q2

d2

dz2
+ 1, (4.27)

where r = (ε− 1)k2/q2. Note that the incident field satisfies the equation L̂u(inc) = 0. The solution u(z) of
equation (4.27) should also satisfy the radiation conditions at infinity:

1

iq

du

dz
− u = 0 as z →∞ and

1

iq

du

dz
+ u = 0 as z → −∞. (4.28)



60 CHAPTER 4. LINEARIZED INVERSE SCATTERING FOR THE POLARIZED WAVES

The overall solution to equation (4.27) will be obtained as the sum of the general solution to the corre-
sponding homogeneous equation and a particular solution to the inhomogeneous equation (4.27). For the
general solution to the homogeneous equation L̂u = 0 subject to the radiation conditions (4.28) we can write:

u(h)(z) =

{
Bu0e

iqz, z > 0,

Cu0e
−iqz, z < 0,

(4.29)

where B and C are constants. A particular solution to the inhomogeneous equation (4.27), which accounts
for the resonance between L̂ and g(z) on the material domain z > 0, is given by

u(p)(z) =

{
Au0ze

iqz, z > 0,

0, z < 0,
(4.30)

where the value of A is obtained by the method of undetermined coefficients:

A =
irq

2
. (4.31)

Combining (4.29) and (4.30), we obtain the overall scattering solution in the form

u(sc)(z) =

{
(Az +B)u0e

iqz, z > 0 (material),

Cu0e
−iqz, z < 0 (vacuum),

(4.32)

where the constants B and C shall be determined with the help of the interface conditions (4.19). The
constant C can be interpreted as the reflection coefficient.

In Sections 4.2.3.2 and 4.2.3.3 we will show that whereas the governing differential equation (4.27) and
the value of r on its right-hand side are the same for both polarizations, the interface conditions (4.19), as
expressed via the single unknown function u, appear different for the horizontal and vertical polarization.
Specifically, in either case the interface conditions can be written as

u|(M) = u|(F ) ;
du

dz

∣∣∣∣
(M)

=
du

dz

∣∣∣∣
(F )

+Ru0, (4.33)

where the constant R depends on the polarization (it may be equal to zero). Accordingly, the solution
(4.32) also appears different for the horizontal and vertical polarization. In particular, substituting (4.32)
and (4.31) into (4.33), we can express the reflection coefficient C via the parameters r and R:

C = B = −r
4

+
R

2iq
, (4.34)

which indicates that the reflection coefficient depends on the polarization via R.
Finally, let us note that equation (4.27) can also be solved by convolution with the fundamental solution,

see, e.g., [87]. As we explain in Section 4.3 though, the deficiency of this approach is precisely in that it offers
no easy way of accounting for the different interface conditions (i.e., different values of R) that correspond
to different polarizations.

4.2.3.2 Horizontal polarization.

In this case, the unknown quantity in equation (4.23) is usually taken as U = Ey, with the other two nonzero
field components being Hx and Hz. The first equation (4.18) then implies:

Hx =
i

k

dEy
dz

, (4.35)

so that boundary conditions (4.19) reduce to:

Ey|(F ) = Ey|(M) and
dEy
dz

∣∣∣∣
(F )

=
dEy
dz

∣∣∣∣
(M)

. (4.36)
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Boundary conditions (4.36) imply the continuity of the total field (4.24a) and its first normal derivative at
the interface. As the incident field (4.24b) and its derivative are continuous at z = 0, so are the scattered

field u(sc) = E
(sc)
y and its first derivative with respect to z:

E(sc)
y

∣∣∣
(F )

= E(sc)
y

∣∣∣
(M)

and
dE

(sc)
y

dz

∣∣∣∣∣
(F )

=
dE

(sc)
y

dz

∣∣∣∣∣
(M)

. (4.37)

Conditions (4.37) are used to determine the constants B and C in (4.32). Comparison of (4.37) to (4.33)
shows that R = 0, so, according to (4.34), the co-polarized reflection coefficient for the horizontal polarization
is given by:6

SHH
def
= C = B = −r

4
= −1

4

k2

q2
(ε− 1). (4.38)

At the same time, the Fresnel solution [67, Chapter I] gives the following expression for the exact reflection
coefficient in the case of horizontal polarization:

S
(exact)
HH = − sin(θi − θt)

sin(θi + θt)
, (4.39)

where θi is the incidence angle and θt is the refraction angle (defined by Snell’s law):

sin θi =
K

k
, sin θt =

1√
ε

sin θi. (4.40)

Formulae (4.39), (4.40) do not involve linearization and are valid for arbitrary values of ε.
A comparison of the linearized solution (4.32), (4.31), and (4.38) to the Fresnel solution (4.39), (4.40)

shows the deficiency of the former: in the material, it has a component that grows linearly as z increases,
which is not physical. In addition, expression (4.32) does not provide the correct wavenumber and propaga-
tion direction of the refracted wave, which restricts the validity of the first Born approximation inside the
material to the area [88]:

|z| 6 z0 ∼
π

|q − q(exact)|
≈ 2πq

k2|ε− 1|
,

where q(exact) is the z-component of the refracted wavenumber obtained from Snell’s law:

q(exact) =
√
εk cos θt = k

√
ε− sin2 θi,

see the second equation in formula (4.40).
However, formulae (4.32) and (4.38) are useful in the vacuum region: the wavenumber and propagation

direction of the scattered field in vacuum are correct, and one can also see that the reflection coefficient
(4.38) given by the first Born approximation coincides with the linear term in the expansion of the exact
reflection coefficient (4.39) in powers of κ = ε − 1. Indeed, using equations (4.40) and taking into account
that cos θi = q/k and also

ε cos2 θt = ε− (1− cos2 θi) = cos2 θi

(
1 + κ

k2

q2

)
,

we can transform expression (4.39) as follows:

S
(exact)
HH =

1√
ε

sin θi cos θi − 1√
ε

cos θi sin θi(1 + κk2/q2)1/2

1√
ε

sin θi cos θi + 1√
ε

cos θi sin θi(1 + κk2/q2)1/2

=
1− (1 + κk2/q2)1/2

1 + (1 + κk2/q2)1/2
= −1

4

k2

q2
κ +O(κ2) = SHH +O(κ2).

6Hereafter, we identify the reflection coefficients with the entries of the scattering matrix S of (4.14), see Section 4.2.3.4.
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4.2.3.3 Vertical polarization.

In this case, we take U = Hy in equation (4.23). The first interface condition for Hy at z = 0 is the
continuity of Hy itself, see (4.19). The second interface condition is obtained from the continuity of Ex,
using the relation

ε(z)Ex = − i
k

dHy

dz
(4.41)

that follows from (4.17), and taking into account that ε = 1 for z < 0, see formula (4.22). Altogether, this
yields the following boundary conditions for Hy at z = 0:

Hy|(F ) = Hy|(M) ,
dHy

dz

∣∣∣∣
(F )

=
(
ε−1 dHy

dz

)∣∣∣∣
(M)

. (4.42)

The key difference between these boundary conditions and boundary conditions (4.36) that we have obtained
for the horizontal polarization is the presence of the factor ε−1 in the condition for the normal derivative
(i.e., z-derivative) in (4.42). Because of this factor, for the vertical polarization the normal derivative of the
total field is no longer continuous, and rather undergoes a jump at z = 0, which is due to the jump of ε−1,
see (4.42). As the derivative of the incident field (4.24b) is still continuous, the discontinuity appears in the
z-derivative of the scattered field:

ε−1 dH
(sc)
y

dz

∣∣∣∣∣
(M)

− dH
(sc)
y

dz

∣∣∣∣∣
(F )

= (1− ε−1)
dH

(inc)
y

dz

∣∣∣∣∣
z=0

.

Multiplying both sides of this equality by ε and disregarding the quadratic term (ε− 1)
dH(sc)

y

dz

∣∣∣∣
(F )

= O(κ2)

on the left-hand side, we arrive at the inhomogeneous linearized interface condition for the normal derivative

of H
(sc)
y :

dH
(sc)
y

dz

∣∣∣∣∣
(M)

− dH
(sc)
y

dz

∣∣∣∣∣
(F )

= (ε− 1)
dH

(inc)
y

dz

∣∣∣∣∣
z=0

. (4.43)

Comparing (4.43) to (4.33) while taking into account (4.24b) we get R = iq(ε−1). Hence, according to (4.34),
we obtain [cf. formula (4.38)]:

SVV
def
= C = B = −r

4
+
ε− 1

2
= SHHQ, where Q =

K2 − q2

k2
. (4.44)

The true reflection coefficient for this polarization is given by the Fresnel solution [67, Chapter I] [cf.
formula (4.39)]:

S
(exact)
VV =

tan(θi − θt)
tan(θi + θt)

=
sin θi cos θi − sin θt cos θt
sin θi cos θi + sin θt cos θt

, (4.45)

where θi and θt are defined in (4.40). As in the case of the horizontal polarization, see Section 4.2.3.2,
reflection coefficient (4.44) derived with the help of the first Born approximation can also be obtained by
linearization of the exact reflection coefficient (4.45) with respect to κ:

S
(exact)
VV =

ε− (1 + κk2/q2)1/2

ε+ (1 + κk2/q2)1/2
= −1

4

k2

q2
κ +

ε− 1

2
+O(κ2) = SVV +O(κ2),

where we have used the same transformations as in Section 4.2.3.2.
The plots in Figure 4.2(a) show the exact and linearized reflection coefficients for both polarizations,

as well as the polarization ratio Q, calculated using the first Born approximation and according to the
Fresnel formulas. As expected, the accuracy of the first Born approximation decreases as the value of (ε−1)
increases. Note that typical values of the refractive index

√
ε are between 1 and 2 [67, Chapters I and II].

Remark. The expression for the polarization ratio Q in formula (4.44) indicates that the scattered field in
the vertical polarization vanishes if |K| = |q|, i.e., if the incidence angle is π/4. In other words, the Brewster
angle in the linearized framework is equal to π/4. This should be expected for a weakly refractive material,
in which the direction of the transmitted ray is close to that of the incident one (i.e., |θi − θt| ∼ κ, see
formula (4.40)), and hence perpendicular to the direction of the reflected ray (see, e.g., [67, Chapter I]).
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Figure 4.2: Reflection coefficients and polarization ratios for the linearized and full formulation: (a) lossless
isotropic dielectric; (b) and (c): lossless birefringent dielectric with ε⊥ and ε‖ as independent variables,
respectively.

4.2.3.4 Discussion of the isotropic case.

Hereafter, we restrict our analysis to the scattering of plane transverse waves off a plane interface, so that
the tangential components of the wave vectors for the incident, transmitted, and reflected fields are the
same. Under these assumptions the reflection angle is known, and hence the reflection coefficients computed
in Sections 4.2.3.2 and 4.2.3.3 (and Sections 4.2.4 and 4.2.5 for other types of scatterers) already take into
account the transformation between the coordinate systems used for representing the incident field and the
reflected field, see the discussion after equation (4.12). Moreover, as we are considering only genuine plane
waves, we can attribute both E (sc) and E (inc) in formula (4.12) to the same location right at the interface,
rather than to different spatial locations in the far field (that allow one to approximate a more general wave
form by a plane wave). Therefore, we may actually leave out the common phase φ0, see (4.15a), that takes
into account the propagation distance/time, and directly associate the reflection coefficients we compute
with the corresponding entries of the scattering matrix S. This approach will be adopted for the rest of the
chapter.

Analysis of the reflection coefficients (4.38) and (4.44) shows that scattering off a perfect isotropic dielec-
tric yields only one degree of freedom in the scattering matrix S of (4.14). At the same time, the reflection
coefficients for two polarizations, SHH and SVV, differ by a factor of Q, see formula (4.44), that does not de-
pend on the material properties at all. Therefore, when this type of scattering material is assumed, the only
quantity that can be reconstructed from measurements is ε − 1, which also happens to be the only physi-
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cal characteristic of the target, regardless of the received polarization(s). If, however, there is a mismatch
between the observations and the predictions of the model (e.g., if the ratio of the received co-polarized sig-
nals differs substantially from Q, or if significant cross-polarized components are detected), then the use of
a more comprehensive model for the scattering material may be justified, see Sections 4.2.4 and 4.2.5.

4.2.4 Perfect birefringent dielectric

4.2.4.1 Governing equations.

A perfect (i.e., lossless) anisotropic medium is characterized by the dielectric tensor ε that relates the
components of D and E :

Di = εijEj , i, j = x, y, z, (4.46)

while σ is a zero tensor, so that D̃ in (4.18) is still the same as D . For a birefringent material (i.e., a uniaxial
crystal), there exists a coordinate system x′, y′, z′, in which the tensor ε is diagonal and the relation (4.46)
simplifies to:

Dx′ = ε⊥Ex′ , Dy′ = ε⊥Ey′ , Dz′ = ε‖Ez′ . (4.47)

Let c be a unit vector along the z′ axis, and let α, β, and γ be its x, y, and z components, respectively (see
Figure 4.1). The components of a unit vector are related by

α2 + β2 + γ2 = 1. (4.48)

Then, the entries of the tensor ε become (see [94,95]):

εxx = ε⊥ + α2∆ε, εyy = ε⊥ + β2∆ε, εzz = ε⊥ + γ2∆ε,

εxy = εyx = αβ∆ε, εxz = εzx = αγ∆ε, εyz = εzy = βγ∆ε,
(4.49)

where ∆ε = ε‖ − ε⊥. The diagonal terms in (4.49) are O(1), while the off-diagonal terms are O(κ) [cf. the
first relation in formula (4.21)].

The isotropic case considered in Section 4.2.3 is characterized by ∆ε = 0. There, the off-diagonal terms
in (4.49) vanish and the two basic polarizations (horizontal and vertical) in system (4.18) separate. They
are described individually by equation (4.23) for Ey and Hy, respectively. If ∆ε 6= 0 though, then the two
polarizations remain coupled. However, the treatment of this case is greatly simplified in the presence of a
small parameter κ. Namely, our assumption that the dielectric is weak implies that the coupling terms are
small. For the case of weak coupling, it still makes sense to use Ey and Hy as the unknowns in the problem,
because it simplifies the analysis of the Born approximation and makes the comparison to the isotropic case
[equation (4.23)] easier.

To reduce system (4.18) to two equations for Ey and Hy, we will use the inverse dielectric tensor η defined
as:

Ei = ηijDj , i, j = x, y, z. (4.50)

the entries of this tensor, accurate to O(κ), are:

ηxx = 1/εxx, ηyy = 1/εyy, ηzz = 1/εzz,

ηxy = ηyx = −εxy, ηxz = ηzx = −εxz, ηyz = ηzy = −εyz.
(4.51)

which can be proven by observing that all entries of the tensor ε · η − I are o(κ). Then, we eliminate all
field components except Ey and Hy from system (4.18) as follows:

1. The dependence (4.26) on the x coordinate is assumed for all field components, so in system (4.18) we
replace ∂/∂x by iK and ∂/∂z by d/dz, respectively. This allows us to explicitly express the components
Dx, Dz, Hx, and Hz via Ey, Hy, and their derivatives with respect to z:

Dx = − i
k

dHy

dz
, Dz = −K

k
Hy, (4.52a)

Hx =
i

k

dEy
dz

, Hz =
K

k
Ey. (4.52b)
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2. Formulae (4.52b) are substituted into the expression for Dy in (4.18), which yields:

Dy = − 1

k2

(d2Ey
dz2

−K2Ey

)
. (4.53)

3. Equations (4.52a) and (4.53) are substituted into formula (4.50), which leads to the following expres-
sions for Ex and Ez:

Ex = −ηxx
i

k

dHy

dz
− ηxy

1

k2

(d2Ey
dz2

−K2Ey

)
− ηxz

K

k
Hy, (4.54a)

Ez = −ηzz
K

k
Hy − ηxz

i

k

dHy

dz
− ηyz

1

k2

(d2Ey
dz2

−K2Ey

)
, (4.54b)

whereas for Ey we obtain:

(ηyy
d2

dz2
+ k2 −K2ηyy)Ey = −k(iηxy

d

dz
+Kηyz)Hy. (4.55)

4. Expressions (4.54) are substituted into the y component of the Faraday law in (4.18) (the equation
that relates Ex, Ez, and Hy). After simplifications, we arrive at

(ηxx
d2

dz2
+ k2 −K2ηzz)Hy − 2iηxzK

dHy

dz

= − i
k

(
iηyzK − ηxy

d

dz

)(d2Ey
dz2

−K2Ey

)
. (4.56)

Note that the isotropic equation (4.23) can be derived from equation (4.55), or from equation (4.56), by
setting ∆ε = 0 in formulae (4.49) and (4.51). As will be seen in Sections 4.2.4.2 and 4.2.4.3, equations
(4.55), (4.56) are particularly well suited for computing the scattered field because of the way they couple
the components Ey and Hy. Specifically, for electromagnetic fields represented in the form (4.24a), it appears
very convenient to carry out the Born approximation in two stages: first decouple equations (4.55) and (4.56)
from one another, and then linearize the resulting individual equations.

System (4.55), (4.56) will also require boundary conditions at z = 0, see (4.19). The boundary conditions
will be obtained with the help of relations for Hx and Ex in formulae (4.52b) and (4.54a). In the isotropic
case, expression (4.54a) with (4.51) taken into account reduces to (4.41), as expected. In the anisotropic
case, the right-hand side of expression (4.54a) will be responsible for the inhomogeneous boundary conditions
(similar to (4.41) and (4.43) in isotropic case) for the vertical polarization of the scattered field.7

Let us now consider the two basic polarizations of the incident wave separately. For each one, the
scattered field can also be polarized either vertically or horizontally.

4.2.4.2 Horizontal polarization of the incident wave.

In this case, the component Hy is present only in the scattered field, hence Hy = O(κ) (see (4.24c)).
Therefore, the right-hand side of equation (4.55) appears O(κ2) because according to (4.49) and (4.51),
ηxy ∼ ∆ε = O(κ) and ηyz ∼ ∆ε = O(κ). As such, this right-hand side can be neglected, and the co-
polarized scattering for the horizontal incident polarization is described by

(ηyy
d2

dz2
+ k2 −Kηyy)Ey = 0.

This equation can be transformed into

L̂Ey =
ηyy − 1

q2

(
K2 − d2

dz2

)
Ey, (4.57)

7The inhomogeneous boundary condition will apply to the co-polarized component of the scattered field when the incident
field is polarized vertically, and to the cross-polarized component of the scattered field when the incident field is polarized
horizontally.
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where the operator L̂ is defined in (4.27). Linearization of (4.57) according to (4.24) yields:

1

E
(inc)
0y

L̂E(sc)
y =

(ηyy − 1)k2

q2
θ(z)eiqz, (4.58)

which coincides with equation (4.27) for r = −(ηyy − 1)k2/q2 and u0 = E
(inc)
0y .

Since in the co-polarized case the scattered wave is also polarized horizontally, Ey and Hx must be
continuous at z = 0, see (4.19), where the expression for Hx is given by the first equality of (4.52b).
Recalling that the incident field is continuous at the interface along with its normal derivative, we obtain

the continuity of E
(sc)
y and

dE(sc)
y

dz :

E(sc)
y

∣∣∣
(F )

= E(sc)
y

∣∣∣
(M)

,
dE

(sc)
y

dz

∣∣∣∣∣
(F )

=
dE

(sc)
y

dz

∣∣∣∣∣
(M)

, (4.59)

so that in formula (4.33) we have R = 0. Interface conditions (4.59) are the same as (4.37) in the isotropic

case. Using (4.34) for E
(sc)
y , we get the following reflection coefficient:

SHH =
1

4

k2

q2
(ηyy − 1). (4.60)

For ∆ε = 0, formula (4.60), with the help of (4.51), reduces to the isotropic expression in (4.38), as expected.
For the cross-polarized scattering, i.e., the vertical polarization of the scattered wave, we linearize equation

(4.56) taking into account that H
(inc)
y = 0 and hence Hy = H

(sc)
y = O(κ) according to (4.24c). Thus, on the

left-hand side we may replace ηxx and ηzz by 1. The remaining off-diagonal terms of η are O(κ); hence, we

drop the ηxz term on the left-hand side and replace Ey by E
(inc)
y on the right-hand side. This yields:

( d2

dz2
+ q2

)
H(sc)
y = − i

k

(
iηyzK − ηxy

d

dz

)(d2E
(inc)
y

dz2
−K2E(inc)

y

)
. (4.61)

Equation (4.61) can be transformed into

1

E
(inc)
0y

L̂H(sc)
y =

k

q

(
ηxy −

K

q
ηyz

)
θ(z)eiqz. (4.62)

As the polarization of the scattered field is vertical, Hy = H
(sc)
y and Ex must be continuous at z = 0, see

(4.19). We use formula (4.54a) for Ex to express the interface conditions via the y-components of the fields.

Using H
(sc)
y = O(κ) and recalling that the off-diagonal terms of η are also O(κ), we can set ηxx = 1 in the

first term and drop the third term on the right-hand side of that relation. Thus, we arrive at the following

interface condition for the normal derivative of H
(sc)
y :

− i
k

dH
(sc)
y

dz

∣∣∣∣∣
(F )

= − i
k

dH
(sc)
y

dz

∣∣∣∣∣
(M)

+ ηxyE
(inc)
0y . (4.63)

It is inhomogeneous due to the second term on the right-hand side of (4.54a) [cf. (4.43)].
To define the cross-polarized reflection coefficient for this case, we use the following convention: if the

scattered field in vacuum is given by H
(sc)
y = H

(sc)
0y eiKx−iqz (see equations (4.26) and (4.32)), then the

reflection coefficient will be
SVH

def
= H

(sc)
0y /E

(inc)
0y . (4.64)

Next, we introduce the notation

G±
def
= −

(
ηxy ±

K

q
ηyz

)
= ∆ε

(
αβ ± K

q
βγ
)

(4.65)
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(see (4.51) for the components of η) and match equation (4.62) to (4.27), which yields u0 ≡ E
(inc)
0y and

r = kG−/q (note the minus sign in (4.65)). We also match the interface condition (4.63) to the second
condition (4.33), which yields R = −ikηxy. Substituting these values of r and R into (4.34), we express the
cross-polarized reflection coefficient defined by (4.64) as

SVH =
1

4

k

q
G+. (4.66)

4.2.4.3 Vertical polarization of the incident wave.

We start with the co-polarized scattering again. For this case, we have E
(inc)
y = 0 and, consequently,

Ey = E
(sc)
y = O(κ). As ηyz ∼ ηxy = O(κ), the right-hand side of equation (4.56) can be dropped, making

this equation homogeneous: (
ηxx

d2

dz2
+ k2 −K2ηzz

)
Hy − 2iηxzK

dHy

dz
= 0.

Linearization of this equation gives

1

H
(inc)
0y

L̂H(sc)
y =

(
(ηxx − 1) +

K2

q2
(ηzz − 1)− 2ηxz

K

q

)
θ(z)eiqz, (4.67)

where H
(inc)
0y is the amplitude of the incident wave. The interface conditions for this co-polarized case require

continuity of Hy and Ex at z = 0. Given the continuity of the incident field along with its normal derivative,

the second equation of (4.19b) yields the continuity of H
(sc)
y , while for Ex we employ formula (4.54a) and

after the linearization obtain:

− i
k

dH
(sc)
y

dz

∣∣∣∣∣
(F )

= − i
k

dH
(sc)
y

dz

∣∣∣∣∣
(M)

+
q

k
(ηxx − 1)H

(inc)
0y − K

k
ηxzH

(inc)
0y . (4.68)

Similarly to the isotropic case, see formula (4.43), the normal derivative of H
(sc)
y is discontinuous at the

interface. Comparing (4.67) and (4.68) to (4.27) and (4.33), we get:

r = −
(

(ηxx − 1) +
K2

q2
(ηzz − 1)− 2ηxz

K

q

)
and R = iKηxz − iq(ηxx − 1).

Then, using formula (4.34), we obtain:

SVV = −1

4

(
(ηxx − 1)− K2

q2
(ηzz − 1)

)
. (4.69)

For ∆ε = 0, formula (4.69), with the help of (4.51), reduces to the isotropic expression in (4.44), as expected.
The cross-polarized field in this case is governed by the linearized equation (4.55):( d2

dz2
+ q2

)
E(sc)
y = −k(iηxy

d

dz
+Kηyz)H

(inc)
y ,

which can be transformed into

1

H
(inc)
0y

L̂E(sc)
y =

k

q2

(
qηxy −Kηyz

)
θ(z)eiqz. (4.70)

Remarkably, the value of r in (4.70) and (4.62) is the same, r = kG−/q, where G− is defined by (4.65). The
difference between the cross-polarized case of Section 4.2.4.2 and the cross-polarized case considered here is
in the boundary conditions. Indeed, for the current cross-polarized case we require the continuity of Ey and
Hx at z = 0, which translates into the homogeneous boundary conditions (4.59) by taking into account that
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Ey = E
(sc)
y and using the first equation of (4.52b) for Hx. Hence, R = 0, and using formula (4.34) for E

(sc)
y

with u0 ≡ H(inc)
0y , we arrive at the reflection coefficient

SHV = −1

4

k

q
G−, (4.71)

which is different from (4.66). In formula (4.71), SHV is defined similarly to (4.64):

SHV
def
= E

(sc)
0y /H

(inc)
0y provided that E(sc)

y = E
(sc)
0y eiKx−iqz for z < 0.

4.2.4.4 Scattering coefficients for perfect birefringent dielectric.

For future reference, we present here the expressions for the reflection coefficients given by (4.60), (4.69),
(4.66), and (4.71) in the following form (expressions (4.49), (4.51), and (4.65) have also been used):

SHH = −1

4

k2

q2
(ε⊥ − 1 + β2∆ε),

SVV =
1

4

(
(ε⊥ − 1 + α2∆ε)− K2

q2
(ε⊥ − 1 + γ2∆ε)

)
,

SHV = −1

4

k

q

(
α− K

q
γ
)
β∆ε,

SVH =
1

4

k

q

(
α+

K

q
γ
)
β∆ε.

(4.72)

It should be noted that here we used the approximations 1−εxx
εxx

≈ 1−εxx,
1−εyy
εyy

≈ 1−εyy, and 1−εzz
εzz

≈ 1−εzz
which are justified because thes diagonal entries of the permittivity matrix have values that are close to unity,
making the numerators small.

4.2.4.5 Scattering off basal plane.

We start analyzing particular geometries by assuming that the interface between the vacuum and material is
normal to the optical axis, in which case we say that it coincides with the so-called basal plane. Substituting
α = 0, β = 0, and γ = 1 (see Figure 4.1) into equations (4.72), we obtain the following expressions for the
reflection coefficients:

SHH = −1

4

k2

q2
(ε⊥ − 1),

SVV = SHHQ, where Q =
1

k2

(
K2 ε‖ − 1

ε⊥ − 1
− q2

)
, (4.73)

SVH = 0, SHV = 0.

Comparing the values of Q in formulae (4.73) and (4.44), we see that unlike in the isotropic case (see
Figure 4.2(a)), the ratio of the co-polarized reflection coefficients now depends on the material properties.
Indeed, while the quantity Q in (4.44) depends only on the incident angle, in (4.73) it may assume any real
value, depending on (ε⊥−1) and (ε‖−1). Therefore, this scattering configuration has two degrees of freedom
rendered by the real-valued reflection coefficients SHH and SVV.

Once the co-polarized channels SHH and SVV have been defined according to (4.73), one can look into
the possibility of reconstructing the material parameters ε⊥ and ε‖ while interpreting SHH and SVV as the
given data. It turns out that system (4.73) can be solved with respect to ε⊥ and ε‖ for any values of
the observables SHH and SVV. However, not every choice of the input data results in a physically feasible
solution. In particular, the value of Q = SVV/SHH should satisfy the condition

Q+
q2

k2
> 0 (4.74)
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in order for the susceptibilities to be positive:

ε⊥ − 1 > 0 and ε‖ − 1 > 0. (4.75)

If the condition (4.74) is not satisfied, then at least one of the requirements on the material parameters
in (4.75) will not be met.

4.2.4.6 Arbitrary direction of the optical axis.

Analysis of the last two equations in (4.72) shows that the cross-polarized channels are nonzero if β 6= 0 and
β 6= 1, i.e., when the optical axis is neither parallel nor perpendicular to the plane of incidence (note that
the basal plane case considered in Section 4.2.4.5 corresponds to β = 0, i.e., optical axis is parallel to the
incidence plane, and thus provides only co-polarized scattering channels, see (4.73)). The cross-polarized
channels are also proportional to ∆ε, which once again shows that they vanish in the isotropic case. The
ratio of the two off-diagonal entries of the scattering matrix is given by

SHV

SVH
= −qα−Kγ

qα+Kγ
.

This expression can help identify the individual effects of α and γ. If α = 0, then the off-diagonal entries
are equal. If γ = 0, i.e., the optical axis is parallel to the interface, then the sum of the off-diagonal entries
is zero. In either of these two cases, the overall number of degrees of freedom is three, otherwise, i.e., when
αβγ 6= 0, it is four.

The ratio Q of two co-polarized reflection coefficients for arbitrary direction of optical axis differs from
that given in formula (4.73), but still depends on ∆ε:

Q =
SVV

SHH
=

1

k2(ηyy − 1)

(
K2(ηzz − 1)− q2(ηxx − 1)

)
=

1

k2

(
K2 ε⊥ − 1 + γ2∆ε

ε⊥ − 1 + β2∆ε
− q2 ε⊥ − 1 + α2∆ε

ε⊥ − 1 + β2∆ε

)
.

(4.76)

The plots in Figure 4.2(b) and (c) illustrate how Q depends on ε⊥ and ε‖ for θi = π/9. The exact
formulation is made according to [94]. Similarly to the reflection coefficients in Figure 4.2(a), the linearized
and exact values are close if |ε⊥ − 1| � 1 and |ε‖ − 1| � 1.

4.2.4.7 Discussion of the lossless birefringent medium and Theorem 1.

Compared to the isotropic case characterized by the scalar dielectric coefficient ε (Section 4.2.3), the case
of a perfect uniaxial dielectric is controlled by four parameters: ε⊥, ε‖, α, and γ (note that β is not an
independent quantity due to relation (4.48)). Depending on the particular geometry, this case may provide
two (γ = 1, Section 4.2.4.5), three (α = 0, βγ 6= 0 or γ = 0, αβ 6= 0), or four (αβγ 6= 0) degrees of
freedom (Section 4.2.4.6). However, the mere availability of the correct number of degrees of freedom does
not, generally speaking, guarantee that the problem of reconstructing the material properties from reflection
coefficients has a solution for any angle of incidence and any input data (i.e., any arbitrary values of the
observable quantities SHH, SVV, SHV, and SVH).

The issue of solvability of the aforementioned problem is addressed by the following

Theorem 1. Equations (4.72) can be solved with respect to ε⊥, ε‖, α, and γ for the given SHH, SVV, SHV,
SVH, and θi if and only if

(SVV + V SHH)2 > 4V SHVSVH, (4.77)

where

V =
q2 −K2

k2
= cos2 θi − sin2 θi = cos 2θi,

and θi is the angle of incidence defined in (4.40).
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Theorem 1 is proved in Appendix N. Theorem 1 shows, in particular, that for the linearized scattering
off a plane interface between the vacuum and a lossless birefringent dielectric, the inverse problem does not
have a solution for all possible combinations of reflection coefficients, see (4.77). It is not clear ahead of time
what may be causing this limitation of solvability: whether it is the type of the material that we have chosen
or the linearization itself. We address this question in Appendix O by conducting numerical simulations for
the exact formulation of the direct scattering problem. It turns out that even with no linearization there are
still regions in the space of reflection coefficients for which there is no solution. Moreover, if in the case of
weak scattering (when the linearization applies) neither the linearized nor the original problem happen to
have a solution, then the regions of no solution for both problems seem to coincide. Hence, the limitation
of solvability of the linearized inverse problem shall be attributed to the type of the target material rather
than to the first Born approximation.

4.2.5 Isotropic and anisotropic lossy dielectric

4.2.5.1 Modified permittivity tensor in the presence of a finite conductivity.

First, we consider the case of an isotropic lossy dielectric, i.e., ε = εI, σ = σI, where ε > 0 and σ > 0 are
scalars. Then, the propagation is governed by equations (4.17) supplemented by the material relations

D = εE and j = σE . (4.78)

Given (4.78), the second equation of (4.17) transforms into

∇×H = −ikε̃E ,

where [cf. formula (4.10)]

ε̃ = ε+ i
4πσ

ω
= 1 + (ε− 1) + i

4πσ

ω
. (4.79)

This is equivalent to the previously considered case of a perfect isotropic dielectric (Section 4.2.3) with a
redefined dielectric constant. The applicability of the first Born approximation (see Section 4.2.3.1) requires
that the conductivity term in expression (4.79) be small, or 4πσ/ω ∼ κ � 1, see (4.21). If this condition is
satisfied, then all the formulae in Section 4.2.3 remain valid, with ε replaced by ε̃.

We will now extend this consideration to anisotropic permittivity and conductivity. For the latter, we
assume a uniaxial model described by the parameters σ⊥, σ‖, ασ, βσ, and γσ, similarly to the model of
the dielectric tensor described in Section 4.2.4.1. Hence, the representation of the conductivity tensor in
the coordinates of Figure 4.1 will be given by formula (4.49) with (σ⊥, σ‖) substituted for (ε⊥, ε‖) and
(ασ, βσ, γσ) substituted for (α, β, γ). Given this representation and the linearity of relations (4.78), we can
derive the following tensor counterpart of the scalar formula (4.79):

ε̃ = ε+ i
4π

ω
σ. (4.80)

Next, notice that the reflection coefficients in (4.72) are linear functions of susceptibilities (ε‖ − 1)
and (ε⊥ − 1) [note that ∆ε ≡ (ε‖ − 1) − (ε⊥ − 1)], which is in agreement with the first Born approxi-
mation being a linear perturbation method with the susceptibilities playing the role of small parameters.
Therefore, with the conductivities taken into account, the new scattering amplitudes can be calculated by
simple substitution rules:

SHH = −1

4

k2

q2

(
(ε⊥ − 1) + β2∆ε

)
⇓

S̃HH = −1

4

k2

q2

(
(ε⊥ − 1) + β2∆ε+ i

4π

ω
(σ⊥ + β2

σ∆σ)
)
,

(4.81a)
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SVV =
1

4

((
ε⊥ − 1 + α2∆ε

)
− K2

q2

(
ε⊥ − 1 + γ2∆ε

))
⇓

S̃VV =
1

4

(
(ε⊥ − 1) + α2∆ε− K2

q2

(
(ε⊥ − 1) + γ2∆ε

)
+ i

4π

ω

(
σ⊥ + α2

σ∆σ − K2

q2

(
σ⊥ + γ2

σ∆σ
)))

,

(4.81b)

SHV = −1

4

k

q

(
α− K

q
γ

)
β∆ε

⇓

S̃HV = −1

4

k

q

((
α− K

q
γ

)
β∆ε+ i

4π

ω

(
ασ −

K

q
γσ

)
βσ∆σ

)
,

(4.81c)

and

SVH =
1

4

k

q

(
α+

K

q
γ

)
β∆ε

⇓

S̃VH =
1

4

k

q

((
α+

K

q
γ

)
β∆ε+ i

4π

ω

(
ασ +

K

q
γσ

)
βσ∆σ

)
,

(4.81d)

where ∆σ = σ‖ − σ⊥.

4.2.5.2 Isotropic permittivity and isotropic conductivity.

The reflection coefficients (4.38) and (4.44) modified by the foregoing procedure, contain the factor of (ε̃−1),
see (4.79), and thus become complex. Their complexity affects the phase of the reflected wave. However,
the ratio of the reflection coefficients for the vertical and horizontal polarization is still equal to the same
quantity Q defined in (4.44). Moreover, the phase difference between the two reflection coefficients, or CPD,
remains unchanged, i.e., equal to zero. As such, despite the changes in the values of the reflection coefficients
due to a finite conductivity, this case still has only one degree of freedom, the same as the case of a perfect
isotropic dielectric (see Section 4.2.3.4).

4.2.5.3 Anisotropic permittivity and isotropic conductivity: reflection from basal plane.

We analyze the effect of conductivity on the scattering amplitudes obtained in Section 4.2.4.5 assuming that
the conductivity is isotropic, i.e., σ⊥ = σ‖ = σ. In this case, the value of Q in (4.73) should be replaced by

Q =
1

k2

(
K2 ε‖ − 1 + (i4πσ)/ω

ε⊥ − 1 + (i4πσ)/ω
− q2

)
. (4.82)

The new quantity Q defined by (4.82) depends on σ provided that ε⊥ 6= ε‖. This means that the conductivity
σ brings along a new degree of freedom to the scattering matrix. Qualitatively, the difference compared to
the lossless case (4.73) is that the ratio of the co-polarized scattering amplitudes becomes complex, which
introduces a phase shift between the corresponding scattered waves (i.e., a nonzero CPD). In particular, if
the incident wave is polarized linearly, then the scattered field will be polarized elliptically.

Similarly to the case of zero conductivity (Section 4.2.4.5), finite conductivity may also result in solutions
that are not feasible from the standpoint of physics. For example, expression (4.82) can be rewritten as

Q1
def
=

k2

K2

(
Q+

q2

k2

)
=
ε‖ − 1 + (i4πσ)/ω

ε⊥ − 1 + (i4πσ)/ω
. (4.83)

If we assume that the conductivity and susceptibilities are positive, i.e., σ > 0, ε⊥ − 1 > 0, and ε‖ − 1 > 0,
then both the real and imaginary part of the numerator and denominator in the last expression of (4.83) are
positive. It means, in particular, that

Re(Q1) > 0. (4.84a)
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As the imaginary parts of the numerator and denominator are equal, by comparing the absolute values we
get {

Im(Q1) < 0 if |Q1| > 1,

Im(Q1) > 0 if |Q1| < 1.
(4.84b)

Recall that Q (and, consequently, Q1) is an observable: Q = SVV/SHH. If, however, the observed value of Q1

does not satisfy (4.84), then the assumption that the conductivity and the two susceptibilities are positive
is violated.

4.2.5.4 Anisotropic permittivity and isotropic conductivity.

Generalizing the scenario presented in Section 4.2.5.3 to any geometry, (4.82) becomes

Q =
K2
(
(ε⊥ − 1) + γ2∆ε

)
− q2

(
(ε⊥ − 1) + α2∆ε

)
+ i 4π

ω σ
(
K2 − q2

)
k2
(
(ε⊥ − 1) + β2∆ε+ i 4π

ω σ
) . (4.85)

Similarly, (4.83) can be generalized to

Q1
def
=

k2

K2

(
Q+

q2

k2

)
=
ε⊥ − 1 + γ2∆ε+ q2

K2

(
β2 − α2

)
∆ε+ i 4π

ω σ

ε⊥ − 1 + β2∆ε+ i 4π
ω σ

. (4.86)

4.2.5.5 Anisotropic permittivity and conductivity.

Let P = ((ε⊥ − 1), (ε‖ − 1), α, β, γ) be a set of parameters defining the permittivity of the material (Sec-
tion 4.2.4.1), and C = (σ⊥, σ‖, ασ, βσ, γσ) be the parameters of the material conductivity (Section 4.2.5.1).
As shown in Section 4.2.5.1, the effect of a finite “uniaxial” conductivity can be described by adding imaginary
components to the reflection coefficients. For each coefficient, the functional dependence of the imaginary
part on the parameters C is similar to that of the real part on P [as illustrated by formula (4.81a)]. For
the entire matrix of reflection coefficients S (essentially equivalent to the scattering matrix S of (4.14), see
Section 4.2.3.4), this functional dependence may be expressed as

S = S(P ,C) =

[
SHH(P ) SHV(P )
SVH(P ) SVV(P )

]
+ i

4π

ω

[
SHH(C) SHV(C)
SVH(C) SVV(C)

]
. (4.87)

In the first term on the right-hand side of (4.87), the entries SHH, SVH, SHV, and SVV of the matrix are
real-valued functions of P defined by (4.72). In the second term, the same functions are applied to C.

It has been shown in Section 4.2.4.6 and Appendix N that for the lossless material the set of permittivity
parameters P provides up to four degrees of freedom to the scattering matrix S of (4.87). Further, we
notice that the real and imaginary parts of S depend on P and C the same way up to a multiplicative
constant 4π/ω in front of the imaginary part. Hence, the set of conductivity parameters C provides up to
four additional degrees of freedom to the matrix S. Altogether, the combination of P and C provides up to
eight degrees of freedom to the complex-valued matrix S.

The result of Theorem 1 naturally extends from the lossless material to the lossy material via the following

Corollary 1. The permittivity parameters P and the conductivity parameters C can be reconstructed from
the given complex-valued entries of the scattering matrix S of (4.87) if and only if the inequalities

(Re(SVV) + V Re(SHH))2 > 4V Re(SHV)Re(SVH), (4.88a)

(Im(SVV) + V Im(SHH))2 > 4V Im(SHV)Im(SVH), (4.88b)

hold simultaneously.

Each of the inequalities (4.88a) and (4.88b) is similar to inequality (4.77) in Theorem 1. We can notice
again that the functional dependence of Re(S) and Im(S) on P and C, respectively, is the same up to a
constant factor. Thus, the proof of Corollary 1 reduces to the proof of Theorem 1 applied independently
to Re(S) and Im(S).
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For this most general setting, it may also possible to formulate the criteria for a solution to the inverse
problem to be physical, i.e., to satisfy the conditions ε⊥ > 1, ε‖ > 1, σ⊥ > 0, and σ‖ > 0 (see Sections 4.2.3.4,
4.2.4.5, and 4.2.5.3 for particular cases). If so, however, the resulting expressions are cumbersome. They
may be part of a future study.

4.2.5.6 Discussion of lossy materials.

Altogether, the case of anisotropic permittivity and conductivity has eight independent material parameters
and may provide up to eight degrees of freedom to the scattering matrix. If the hypothesis of Corollary 1
holds, then the material parameters can be successfully reconstructed from the observables. At the same
time, the particular cases of isotropic conductivity considered in Sections 4.2.5.2 and 4.2.5.3 illustrate that
the introduction of a new physical effect that modifies the scattering mechanism does not necessarily lead
to an increased number of the degrees of freedom. Some other simplifications may also reduce the number
of degrees of freedom. For example, the assumption that the dielectric axis coincides with the conductivity
axis will reduce the number of independent parameters from eight to six.

Similarly to Sections 4.1.2 and 4.2.3.2, the first Born approximation does not provide a physically viable
solution in the material, which in the case of a finite conductivity would be a spatially decaying wave. Indeed,
in order for the transmitted wave to decay as z → +∞, the component of its wavenumber normal to the
interface should have an imaginary part. However, after the linearization, see equations (4.25) and (4.27),
the only possible representation for the scattered field is given by (4.32), where the value of q is always
real and is defined by the incident field. Thus, the effect of conductivity is restricted to the changes in the
amplitude and phase of the reflected wave.

Let us also recall that even though the observed scattering matrix (4.14) or (4.87) has four complex-valued
entries, in practice it may appear impossible to distinguish between the relative phase and the common phase
that accounts for the travel distance. Hence, it is customary to keep the HH entry of the scattering matrix
real, see the discussion around equations (4.15), which reduces the number of degrees of freedom to seven.

4.3 Convolution with the fundamental solution and surface po-
tentials

Having discussed the linearized scattering off a half-space filled with various types of materials, we recall
that in the context of SAR imaging the ground reflectivity function is taken in the form of a single layer,
see formula (4.11), or in other words, the target material is considered concentrated only on the surface of
the half-space. In this section, we show that for every material considered in Section 4.2, scattering off a
material subspace can be equivalently reformulated as scattering off a layer of monopoles on its surface.

4.3.1 Lossless isotropic target

Let us return for the moment to the simplest case of a perfect isotropic dielectric. We will provide a somewhat
different interpretation of the solutions obtained in Section 4.2.3 that will help us justify the use of the ground
reflectivity function for SAR imaging in the form of a single layer on the interface z = 0, see formula (4.11).

For the operator L̂ of (4.27), we first define its fundamental solution E = E(z) as a solution to the
inhomogeneous equation L̂E = δ(z) subject to the radiation conditions (4.28). The fundamental solution
exists, is unique, and is given by

E(z) =
1

2iq
eiq|z|. (4.89)

Recall that for the scattering solution in the form (4.32), we have B = C (see (4.34)) for the “homoge-
neous” part of the solution, u(h)(z), see (4.29). Consequently, u(h)(z) can be represented in the form of a
single layer potential:

u(h)(z) = E(z) ∗Nδ(z) = NE(z). (4.90)
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The magnitude of the δ-function at the interface, i.e., the density N of the potential, is equal to the jump
of its derivative at z = 0, i.e.,

N =

[
du(h)

dz

]
z=0

= 2iqCu0, (4.91)

where we use the notation [
du

dz

]
z=0

def
=

du

dz

∣∣∣∣
(M)

− du

dz

∣∣∣∣
(F )

(4.92)

The quantity N in (4.91) depends on the polarization. For the horizontal polarization, the continuity of
du(sc)

dz at z = 0, see (4.37), implies that the jump of du(h)

dz should be negative that of du(p)

dz :[
du(h)

dz

]
z=0

= −
[
du(p)

dz

]
z=0

,

Using (4.31), we get [cf. formula (4.38)]:

NHH = − iq
2

k2

q2
(ε− 1)u0 (4.93)

where u0 is the amplitude of the incident wave for the horizontal polarization, i.e., E
(inc)
0y .

For the vertical polarization, formula (4.43) yields:[
du(h)

dz

]
z=0

= −
[
du(p)

dz

]
z=0

+ (ε− 1)
du(inc)

dz

∣∣∣∣
z=0

,

where u(inc) is given by (4.24b). Consequently [cf. formula (4.44)],

NVV = − iq
2

k2

q2
(ε− 1)u0 + iq(ε− 1)u0 = QNHH. (4.94)

Here, u0 is the amplitude of the incident wave for the vertical polarization, i.e., H
(inc)
0y .

In either case, (4.93) or (4.94), the solution u(h)(z) of (4.90) coincides in the vacuum region z < 0 with the
overall scattering solution u(sc)(z), see formulae (4.32) and (4.29). This means that the reflected field given
by the first Born approximation for the scattering off a material half-space can be equivalently represented
as the reflected field due to the linearized scattering off a specially chosen δ-layer at the boundary of the
half-space. Moreover, for both horizontal and vertical polarization, the magnitude of the single layer is
proportional to (ε − 1)u0 or equivalently, to the scalar lossless ground reflectivity function (4.7) times the
incident field at the interface:

N ∝ (ε− 1)u0 =

(
c2

v2
− 1

)
u0 = c2νu0.

This explains why for the analysis of the reflected field in the framework of the first Born approximation the
ground reflectivity function can be chosen in the form of a single layer at the material interface, see formula
(4.11). We also note that according to the electromagnetic equivalence theorem by Schelkunoff [96], the field
on a given region, regardless of its actual sources located outside of this region, can be reproduced as the
field from the specially chosen auxiliary sources at the boundary of the region.

Given the representation (4.90) of the reflected field as a convolution with the fundamental solution,
one can formulate a natural question of whether or not the entire scattering solution can be obtained as
a convolution integral. In fact, equation (4.27) has been solved by convolution in [87]. This approach,
however, suffers from two limitations. First, the convolution of the fundamental solution (4.89) with the
right-hand side g(z) of (4.27) leads to a diverging improper integral over the interval 0 6 z <∞, and the use
of the limiting absorption principle in [87] for “fixing” the divergence lacks mathematical rigor. But even
disregarding that, the second limitation is more important. For a bounded continuous right-hand side g(z) in
(4.27), the convolution integral yields a C1 smooth function. This implies, in particular, the continuity of the
resulting solution and its first derivative at z = 0, which corresponds to the horizontal polarization only. In
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other words, a straightforward convolution-based approach cannot account for any boundary conditions other
than (4.37) and hence cannot be used for studying other polarizations. To analyze the vertical polarization,
an additional singular term at z = 0 due to boundary condition (4.43) should be taken into account along
with the right-hand side g(z).

4.3.2 Anisotropic and lossy targets

The approach of Section 4.3.1 can be extended to include more complex cases considered in Table 4.2. The
new effects to be described are the cross-polarized components in the scattered field and the phase shift due
to a finite conductivity.

For an incident wave in one of the two basic polarizations, the presence of two components in the scattered
field (co-polarized and cross-polarized) can be described by a two-dimensional vector δ-layer. In doing so,
formula (4.90) applies to each component of the vector δ-layer separately. For a birefringent scatterer
considered in Section 4.2.4, we can use relation (4.91) and express the components of the vector density
using reflection coefficients defined by formulae (4.72):

MH =

[
NHH

NVH

]
= 2iqE

(inc)
0y

[
SHH

SVH

]
, MV =

[
NVV

NHV

]
= 2iqH

(inc)
0y

[
SVV

SHV

]
. (4.95)

A finite conductivity affects the density of the δ-layers given by formulae (4.93), (4.94), and (4.95) through
the modified dielectric tensor ε̃ of (4.80) and the corresponding changes in the reflection coefficients (see
Section 4.2.5.1).

4.4 Application to polarimetric target decomposition

The polarimetric target decomposition [25, 97] can be viewed as a heuristic method of solving the inverse
scattering problem. Basically, the goal is to represent the scattering matrix8 as a linear combination of the
basis matrices:

S = c1S1 + c2S2 + c3S3 + c4S4, (4.96)

where each of Si, i = 1, 2, 3, 4, represents a particular scattering mechanism, and ci, i = 1, 2, 3, 4, are
complex-valued coefficients to be determined. For example, the Pauli matrices

S1 =

[
1 0
0 1

]
, S2 =

[
1 0
0 −1

]
, S3 =

[
0 1
1 0

]
, and S4 =

[
0 −i
i 0

]
.

may be associated with single-bounce and double-bounce scattering off plane surfaces with different orien-
tation, see [25, Chapter 6]. The choice of the basis Si for decomposition specifies the range of admissible
scattering mechanisms, whereas the decomposition coefficients ci determine the (relative) weights for indi-
vidual mechanisms.

If some a priori knowledge about the actual scattering process is available, then it may be beneficial
to choose one (or more) of the matrices Si as the matrix of reflection coefficients for a given scattering
mechanism [see, e.g., formula (N.1)]. This choice allows one to estimate the role of a particular mechanism
in the overall scattering, and makes it easier to interpret the results of decomposition. For example, some
foliage penetration and terrain scattering models [97, Section VI] involve multiple scattering channels where
one of the stages is the “mirror” reflection from the ground. The models developed in Section 4.2 may be
used to represent this “mirror reflection” stage for sufficiently large radar wavelengths that allow one to
neglect the roughness of the surface.

In the current work, we analyze the Sinclair scattering matrices built from physical principles. We can
therefore expect that if an appropriate basis is chosen, then the polarimetric target decomposition will yield

8In practice, the decomposition is often applied to the coherency and covariance matrices, whose entries are second order
moments of the particular combinations of entries of the Sinclair scattering matrix, see [25, Chapters 3, 6]. The decomposition
considered here is called the “coherent decomposition.”



76 CHAPTER 4. LINEARIZED INVERSE SCATTERING FOR THE POLARIZED WAVES

the corresponding material characteristics. For a lossless material, the matrix of reflection coefficients (4.72)
can be equivalently represented as

S =

[
SHH SHV

SVH SVV

]
= −1

4

k2

q2

(
(ε⊥ − 1)S1 + ∆εS2 +

q

k
αβ∆εS3 −

K

k
γβ∆εS4

)
, (4.97)

where the matrices Si, i = 1, 2, 3, 4 are given by

S1 =

1 0

0
K2 − q2

k2

 , S2 =

β2 0

0
K2γ2 − q2α2

k2

 , S3 =

[
0 1
−1 0

]
, and S4 =

[
0 1
1 0

]
.

Hence, we can interpret formula (4.97) as a polarimetric target decomposition of type (4.96) with c1 = ε⊥−1,

c2 = ∆ε, c3 = qαβ∆ε/k, and c4 = −Kγβ∆ε/k (up to a common multiplicative factor of − 1
4
k2

q2 , which can

also be combined with the geometric attenuation coefficient). If we have the decomposition (4.97), then of
the four material parameters to be reconstructed, the two permittivities are obtained directly from c1 and c2,
while the relations for c3 and c4 provide two equations for two of the three directional cosines of the optical
axis (with the third expressed via (4.48)). The problem however is that the entries of the matrix S2 depend
on the material parameters (direction angles for the optical axis) and cannot be defined without having to
solve the inverse problem first. It is possible though to break the loop by taking any diagonal matrix not
proportional to S1 instead of S2. For example, the following set of matrices

S1 =

1 0

0
K2 − q2

k2

 , S ′2 =

0 0

0
K2

k2

 S3 =

[
0 −1
1 0

]
, and S4 =

[
0 1
1 0

]
(4.98)

forms a basis in the space of 2x2 matrices with real entries, does not depend on the material properties, and
hence can be used for target decomposition. The disadvantage of this set is that the resulting value of c2
will, generally speaking, differ from ∆ε, and thus the values of ξ, α, and γ calculated from c1, c3, and c4
will also be incorrect. Still, expansion (4.96) with respect to the basis (4.98) is capable of detecting several
types of configurations (see Figure 4.1):

(i) Isotropy (ζ = 0), by observing that c2 = c3 = c4 = 0;

(ii) Optical axis being either parallel to the incidence plane (β = 0) or perpendicular to it (β = 1, α = γ =
0), when c2 6= 0, c3 = c4 = 0;

(iii) Optical axis being horizontal, excluding the cases in item (ii), (α 6= 0, β 6= 0, γ = 0) when c3 6= 0,
c4 = 0;

(iv) Optical axis lying in the plane normal to both the interface and the incidence plane, excluding the
cases in item (ii), (α = 0, β 6= 0, γ 6= 0) when c3 = 0, c4 6= 0;

(v) Any of the “main diagonal” directions of the optical axis (|α| = |β| = |γ| = 1/
√

3), when c2 = 0, c3 6= 0,
c4 6= 0, etc.

Thus, basis (4.98) appears suitable for the qualitative classification of birefringent targets, although exact
determination of the material parameters still requires solving a nonlinear system (4.72) that consists of
four equations. It is to be noted though that in practice, the equalities in criteria (i)–(v) shall be replaced
by thresholds that would take into account the accuracy of the measurements and the noise levels. The
questions related to noise and experimental accuracy will be addressed in a future publication.

Lossy targets can be identified by detecting a phase shift other than 0 or π between the channels. As
the imaginary part of the matrix S is similar in structure to the real part [see formula (4.87)], a complex
counterpart of the set of matrices (4.98) can be used for the decomposition of Im(S), which is equivalent to
allowing the coefficients ci to become complex.
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4.5 Chapter summary

We have analyzed the linearized scattering of a plane transverse electromagnetic wave off a material half-
space filled with a birefringent weakly conductive dielectric. Our main findings are as follows:

• We have shown that the first Born approximation correctly predicts the scattered field (both amplitude
and phase for each polarization) in the vacuum region.

• We have demonstrated that with the polarization and anisotropy taken into account, the linearized
scattering off a material half-space can still be equivalently reformulated in the vacuum region as
scattering off a specially chosen δ-layer at the interface. This justifies the choice of a ground reflectivity
function in the form of a single layer at the surface of a target, which is common for SAR applications.

• The corresponding inverse scattering problem consists of reconstructing the material characteristics,
i.e., the permittivities, conductivities, and direction angles at the target, from the observable quanti-
ties, i.e., from the four complex-valued entries of the Sinclair scattering matrix. We have provided a
necessary and sufficient condition (see Theorem 1 and Corollary 1) for this inverse problem to have a
solution in the linearized framework.

As of yet, our analysis is limited to “mirror” scattering off a flat surface, and does not account for
backscattering. Hence, in the context of SAR it may be useful for bistatic rather than monostatic imaging,
i.e., for the case where the transmitting and receiving antennas are two different antennas at two different
locations. Another possible application of this “mirror reflection” mechanism is to be a ground reflection
component in the composite foliage penetration and terrain scattering models [97, Section VI].

In this chapter, we have not formally considered any variation of material characteristics along the
interface; that’s why we could assume that all the waves have a common horizontal component K of the
wavenumber, see Figure 4.1. It is obvious, however, that our analysis extends with no change to the case of
slowly varying material characteristics. This means, in particular, that we can consider ground reflectivity
functions that vary along the interface, but only if λ� d, where λ is the wavelength and d is the characteristic
scale of material variations defined, e.g., as d−1 ∼ |∇ε̂|/|ε̂|, where ε̂ can stand for any of the actual physical
quantities that we have taken into account. The constraint λ � d should not present a major limitation
for SAR applications, because the SAR resolution is typically much larger than the wavelength anyway, see
(2.71). On the other hand, our current analysis does not apply to short-scale material variations, d ∼ O(λ),
and to include those it will need to be modified. This is related to accounting for backscattering.

Our motivation for analyzing the first Born approximation in the case of polarized waves and anisotropic
targets was the possibility to build a polarimetric SAR ambiguity theory similarly to how it is done in the
scalar case. This, in particular, may help extend the results of Chapter 2 from the case of scalar imaging
to the case of polarimetric imaging that also involves the Faraday rotation in the magnetized ionosphere
(Chapter 3). It may also appear useful for material identification (see Section 4.4). Our analysis shows that
the polarimetric inverse problem as formulated in this chapter can be soved provided that the hypotheses
of Theorem 1 and Corollary 1 hold. It is also to be noted that the limitation of solvability of the linearized
inverse problem imposed by Theorem 1 is apparently due to the type of the material that we have chosen (a
birefringent dielectric with weak anisotropic conductivity) rather than to the linearization itself, see Appendix
O. Giving a physical interpretation to inequality (4.77), as well as, perhaps, considering other materials and
answering a related question of having non-physical solutions to the inverse problem, see Sections 4.2.3.4,
4.2.4.5, 4.2.5.3, and 4.2.5.5, will be a subject for the future study.
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Chapter 5

Summary and Topics for the Future

5.1 Isotropic ionosphere

SAR images obtained from satellites are prone to deterioration due to the temporal dispersion of radio waves
in the Earth’s ionosphere. The deterioration is stronger for lower carrier frequencies and weaker for higher
carrier frequencies. We have analyzed this phenomenon in the case of a scalar field (for which polarization of
radar pulses is not taken into account) propagating in an inhomogeneous cold plasma. Our analysis shows
that image deterioration is due to the mismatch between the actual signals scattered off the Earths’ surface
and received by the radar antenna and the matched filter (which is a signal processing tool) designed as if
the propagation between the antenna and the ground was unobstructed.

To correct the filter, one needs to know the total electron content (per unit area) in the layer of ionospheric
plasma between the satellite and the ground. This key characteristic need to be known precisely at the time
and place the image is taken. We have proposed to derive this quantity by probing the terrain, and hence
the ionosphere, on two distinct carrier frequencies. We have also shown that within the accuracy of the TEC
reconstruction, the resulting correction of the filter eliminates all the distortions of the image that are due
to the deterministic part of the electron content in the ionosphere.

The correction, however, is not effective for removing the distortions due to the random part of the
charged particle content, i.e., turbulent fluctuations of the electron number density. The reason is that the
correction is essentially based on the information obtained from a single pass of the signal back and forth
between the antenna and the target. For this single pass, the role of randomness is minimal because the
effect of individual fluctuations averages out due to the ergodicity. Nonetheless, the stochastic part manifests
itself as the contributions from multiple passes are added up along the synthetic array. Although we provide
estimates for image distortions due to the stochastic part of ionospheric disturbances, mitigating it will be
a subject for the future study.

We have proposed to use the area-based image registration for improving the accuracy and robustness
of the reconstructed TEC in the dual-carrier probing approach. In particular, we have related the error of
the registration to that of the TEC reconstruction, and have also shown how the error of the TEC affects
the final quality of the re-processed image. The proposed methodology leads to a multi-fold reduction of
the image artifacts caused by the ionosphere in their part which is not due to the turbulence. An important
advantage of the proposed methodology is that neither does it require the ground-based receivers (like GPS
does) nor does it need a repeat satellite pass.

In addition, Chapter 2 exploits the true Kolmogorov-Obukhov spectrum of turbulence and includes a
more accurate account of the effect of turbulent fluctuations on the image than that in [1,8]. It also accounts
for Ohmic losses in the ionospheric plasma and for the horizontal inhomogeneity of the ionosphere. In regard
to the latter we note that whereas our description predicts that the sign of the azimuthal displacement SA
and that of the first moment Q will be the same, see (2.90), other descriptions in the literature may have
those signs as opposite, see, e.g., [11,16,42]. We attribute this discrepancy to the difference in the definition
of SA.

In the case of an isotropic ionosphere, the issues to be addressed in the future may include:

79



80 CHAPTER 5. SUMMARY AND TOPICS FOR THE FUTURE

• Studying the possibility of iterative application of registration/correction procedures. Even if the first
correction is not perfect (say, because the images are blurry and cannot be registered well enough),
the improvement of the image quality may result in a better registration of the two corrected images.

• A more thorough analysis of the stochastic component of ionospheric distortions using the turbulence
structure function [46] rather than the correlation function. Development of appropriate strategies of
how to additionally correct the matched filter in order to reduce the stochastic part of ionospheric
distortions, assuming that the statistics of waves are known.

• An investigation of whether the stochastic component of distortions can be tackled by any of the
general “black box” image sharpening and deblurring techniques [98] developed previously with no
direct relation to spaceborne SAR. This may be warranted given that the current mitigation strategy
based on dual carrier probing is effective mostly for the deterministic part of ionospheric distortions.

5.2 Anisotropic ionsphere

We have shown that for single-polarization SAR, the Faraday rotation is another factor that must be ac-
counted for in a corrected matched filter. This can be done separately to the corrections for dispersive
propagation, and the filter that accounts for the FR can have new corrections applied on top of the previous
ones. We considered the case where the rotation is sufficiently large to not be neglected, but sufficiently small
so that a linearization of the effect of rotation on the received signal could still be a valid approximation.

While it is another step towards a full-fledged SAR ambiguity theory, Chapter 3 is only the first stage in
incorporating the presence of the Earth’s magnetic field into the analysis. Future development may include
investigation of the accuracy and robustness of the proposed algorithm for image improvement. Similarly to
how we have looked into the issue of residual distortions when correcting for the effect of the scalar dispersive
propagation (Section 2.9), this study will elucidate what kind of distortions one should still anticipate if the
parameters characterizing the Faraday rotation are not known exactly but rather obtained with some error.
The accuracy analysis will also include studying the sensitivity of the image ACF to the value of the shift
h, and mitigating the effect of this sensitivity on the proposed correction procedure. In particular, the
ACF of the image intensity can be employed instead of the ACF of the image itself, as one can expect a
better robustness of the algorithm from incorporating the quadratic data [99, 100]. Yet another factor that
contributes to the overall accuracy is the accuracy of the solution of equations (3.28) with respect to the
Faraday rotation parameter (Section 3.5). It may also be investigated in the future.

For a radar operating on very low frequencies the case of a wide range of the Faraday rotation angle may
become important (case (c) on page 44 that is not addressed in this report, see also Figure 3.2(c)). It will
require special attention in the future, because the linearization (3.8) does not apply. Therefore, this case
should be treated differently on both the parameter estimation and filter correction stage. The sub-band
processing approach (Section 3.4), if refined and made quantitative, might provide additional estimates of
the FR parameters even in this wide-range case.

Another issue that may be the subject of future research is analysis of the Faraday rotation within the
chirp for the fully polarimetric case.

Finally, a thorough investigation of the role of randomness for SAR imaging through a magnetized
ionosphere is also warranted. To that end, one will need to distinguish between the randomness of the target,
which we do not consider, and the randomness of the medium, i.e., the ionosphere itself. Randomness of
the ionosphere is due to the turbulent fluctuations of the electron number density ne, which, in turn, make
the Langmuir frequency ωpe, see formula (J.4), a random quantity (more precisely, a random field). In [8]
and Chapter 2, the effect of the turbulent fluctuations of ne on transionospheric SAR imaging in the scalar
isotropic framework has been quantified under the assumption that the scale of inhomogeneities (fluctuations)
is small. In particular, we have shown that the performance of a spaceborne SAR instrument in azimuth
is affected by turbulence much stronger than its performance in range. An even more comprehensive study
that allows for the large scale of turbulent inhomogeneities can be found in [44]. According to (3.7), the
Faraday rotation angle is proportional to ω2

peΩ cosβ. In the presence of turbulence, the Langmuir frequency
ωpe becomes random. As far as the other two factors, Ω and cosβ, neither of them formally depends on ne.
On the other hand, the external magnetic field H0 may still fluctuate if it appears (partially) frozen into the
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plasma for the particular conditions of interest. Therefore, the behavior of both Ω and cosβ in the presence
of turbulence will need to be studied thoroughly so as to adequately represent the overall statistic of ϕF .

5.3 Anisotropic scattering

Chapter 4 presents an analysis of the effect of the target, possibly anisotropic, on the polarization signature.
Specifically, we looked at a hierarchy of predominately dielectric scattering materials and, assuming the
scattering was weak, we were able to show that the first Born approximation predicts the correct scattered
field in a vacuum, even for a fully polarimetric imaging system. This has allowed us to present the results
of the analysis in a relatively compact analytic form.

In a fully polarimetric imaging system, the return data can be characterized by four complex coefficients
relating two inputs to two outputs. For convenience, these are traditionally represented by the Sinclair
scattering matrix. If the scatterer is represented as a weakly conductive uniaxial crystal, then there is a
necessary and sufficient condition under which all eight degrees of freedom of the scattering matrix can be
reconstructed from the observed data. This is an important result; in the past, the scattering matrix has
overwhelmingly been treated phenomenologically, but we have shown that within the linear framework of
the Born approximation, its values reflect key physical properties of the scatterer such as the permittivity
and conductivity. Furthermore, we have shown that the condition needed to establish this relation is not an
artifact of the linearization process but inherent in the selection of a uniaxial crystal as the model for the
target.

As stated in Section 4.5, the scattering study was limited to mirror scattering off a flat surface. More
work will have to be done to fit this into a realistic SAR imaging scenario where a satellite is observing
the Earth by exploiting the backscattering at oblique incidence angles. This, in particular, could include
analysis of scattering of the polarized radio waves off rough surfaces, with the goal of relating SAR imaging
to a physical mechanism of backscattering at the target.

Additionally, future research should incorporate dispersive targets. Dispersion of the target material is
a key characteristic that may enable its identification [101]. The goal is to build a mathematical model
for SAR imaging that includes the dispersion of the target, with possible future applications to material
identification, and with the potential of distinguishing between the target dispersion and the ionospheric
dispersion.

5.4 Additional directions for future work

Additional directions for future study may include:

• Applying the proposed methodology to processing the actual experimental data.

• Approaches for reducing the noise that is always present, regardless of whether the imaging is done
through the ionosphere or not, for example, instrument noise or rough terrain noise. As a minimum re-
quirement, this noise may not be amplified by any of the techniques used for mitigating the ionospheric
distortions.

• Optimization of interrogating waveforms for the ionosphere, beyond the standard linear upchirps.

• An in-depth investigation of the VHF SAR imaging through the ionosphere aimed at determining
whether the VHF frequencies (very low in the SAR context yet still above the Langmuir frequency)
may require a more comprehensive propagation model that would include, for example, kinetic consid-
erations [7].

• Combined analysis of the medium anisotropy and target anisotropy (Chapter 4).

• More comprehensive models for the ionosphere that take into account the ions.

• Incorporation of the improved ground reflectivity models that account for the dependence on the
viewing direction [71] and target texture.
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Appendix A

Factorization of the SAR ambiguity
function

In this appendix, we analyze the error due to the factorization (2.34) of the GAF (2.30), (2.31).
Substituting expression (2.30) into (2.31), we can write

W (y , z ) =
∑
n

∫
χ

χτ (t− tny )e−iα(t−tny )2

e−iω0(t−tny )χτ (t− tnz )eiα(t−tnz )2

eiω0(t−tnz ) dt, (A.1)

where

tny
def
=

2Rny
c

=
2|xn − y |

c
and tnz

def
=

2Rnz
c

=
2|xn − z |

c
. (A.2)

Then, we introduce a new integration variable u and new constants Tn:

u = t−
tnz + tny

2
, Tn =

tny − tnz
2

≡
Rny −Rnz

c
, (A.3)

such that
t− tny = u− Tn and t− tnz = u+ Tn.

The travel time between y and z is of the order of ∆R/c � τ . This is equivalent to |Tn| � τ ; hence, the
two indicator functions χτ under the integral in (A.1) overlap on some interval. The center of this interval
is u = 0 and the endpoints are u = τ/2− |Tn| and u = −τ/2 + |Tn|, so that its length is

τn = τ − 2|Tn|. (A.4)

The phase of the integrand in (A.1) can be expressed as

− α(t− tny )2 − ω0(t− tny ) + α(t− tnz )2 + ω0(t− tnz )

= α
[
(u+ Tn)2 − (u− Tn)2

]
+ ω0(u+ Tn − u+ Tn)

= α · 4uTn + 2ω0T
n,

so the integration can be carried out analytically:

W (y , z ) =
∑
n

e2iω0T
n

∫ τn/2

−τn/2
e4iαTnudu =

∑
n

e2iω0T
n 1

4iαTn
(ei2ατ

nTn − e−i2ατ
nTn)

=
∑
n

e2iω0T
n 1

4iαTn
2i sin(2ατnTn) =

∑
n

e2iω0T
n

τn sinc(2ατnTn).

(A.5)

Similarly to (2.34)–(2.36), let us now introduce a new function

W(RA)(y , z )
def
= WR(y , z ) ·WA(y , z ), (A.6)
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where

WA(y , z ) =

N/2∑
n=−N/2

e2iω0(Rny −R
n
z )/c =

∑
n

e2iω0T
n

(A.7)

and

WR(y , z ) =

∫
χ

A(u0
y )A(u0

z ) dt = τ0 sinc(2ατ0T 0). (A.8)

In formula (A.8), τ0 and T 0 denote τn and Tn, respectively, for n = 0. Our goal is to determine how
accurately this new function W(RA)(y , z ) of (A.6)–(A.8) will approximate the GAF W (y , z ) of (A.1) or,
equivalently, (A.5). To determine the accuracy of approximation, we will estimate the error

W −W(RA) =
∑
n

e2iω0T
n

[τn sinc(2ατnTn)− τ0 sinc(2ατ0T 0)]. (A.9)

The Pythagorean theorem for Rny and Rnz (see Figure 1.1) yields:

(Rnz )2 = |z − xn|2 = H2 + L2 + (xn1 )2 = R2 + (xn1 )2

(Rny )2 = |y − xn|2 = H2 + (L+ l)2 + (xn1 − y1)2

= R2 + 2Ll + l2 + (xn1 − y1)2,

(A.10)

where
L = z2 = R sin θ and l = y2 − z2.

For the physical distances involved, we take

R ∼ L ∼ 106m, |xn1 | . 104m, and |y1| ∼ |l| . 102m.

Then, using the Taylor formula (1 + ξ)1/2 ≈ 1 + 1
2ξ for |ξ| � 1 we get

Rnz
R
≈ 1 +

(xn1 )2

2R2
and

Rny
R
≈ 1 +

1

2

l2 + 2lL+ (xn1 )2 − 2xn1y1 + y2
1

R2
,

which, after keeping only the leading order term that does not depend on n and the leading term that
depends on n, yields:

Rny −Rnz
R

≈ L

R

l

R
− xn1y1

R2
. (A.11)

Consequently, we have

Tn ≈ 1

c

(
l sin θ − y1

xn1
R

)
def
= T 0 −Tn, (A.12)

where, taking into account that xn1 = n∆x1 = nLSA/N , we have introduced

T 0 =
l sin θ

c
, T

1 =
y1∆x1

cR
=
y1LSA

NcR
, and T

n =
y1x

n
1

cR
= nT1. (A.13)

As |T 0| � τ and |Tn| � τ , we can write using the first-order Taylor formula:

sinc(2ατnTn) ≈ sinc(2ατ0T 0)− 2ατ0
T
n sinc′(2ατ0T 0), (A.14)

so that the expression in the square brackets in (A.9) evaluates to

τn sinc(2ατnTn)− τ0 sinc(2ατ0T 0) ≈ TnS = SnT1,

where
S = sinc(2ατ0T 0)− 2α(τ0)2 sinc′(2ατ0T 0). (A.15)
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Hence, formula (A.9) transforms into

W −W(RA) ≈ eiΦ0S
∑
n

e−2iω0T
n

T
n = ST1eiΦ0

N/2∑
n=−N/2

neinϕ, (A.16)

where

Φ0 = 2
ω0l

c
sin θ and ϕ = −2ω0T

1 = −2
ω0LSA

NRc
y1.

Note that Φ0 defined above is not quite identical to the one in formula (2.37), but the discrepancy is small,
on the order of those terms neglected when deriving (A.11).

To perform the summation in (A.16), we first use the standard summation of a geometric sequence:

N/2∑
n=−N/2

einϕ =
sin(ϕ(N + 1)/2)

sin(ϕ/2)
≈ N sinc

Nϕ

2
, (A.17)

where the last approximate equality holds provided that |ϕ| � 1, i.e., πy1/(∆AN)� 1. Then, differentiating
both sides of (A.17) w.r.t. ϕ we get

N/2∑
n=−N/2

neinϕ =
1

i

∂

∂ϕ

N/2∑
n=−N/2

einϕ ≈ 1

i

∂

∂ϕ

(
N sinc

Nϕ

2

)
=
N2

2i
sinc′

Nϕ

2
.

Therefore, the expression in (A.16) evaluates to

W −W(RA) ≈ ST1N
2

2i
eiΦ0 sinc′

Nϕ

2
=
ieiΦ0

2ω0
NSY1 sinc′ Y1

=
ieiΦ0

2ω0
N
(

sinc(2ατ0T 0)− 2α(τ0)2 sinc′(2ατ0T 0)
)
Y1 sinc′ Y1,

(A.18)

where Y1 = −Nϕ/2 = πy1/∆A. Formula (A.18) provides an expression for the factorization error (A.9) that
we will now estimate. Let us first assume that

|Y1| . 1, | sinc′ Y1| . 1, and | sinc′(2ατ0T 0)| . 1,

which is reasonable to expect. Then, let us notice that as 2α(τ0)2 ≈ Bτ � 1, the second term on the
right-hand side of formula (A.15) is much greater than the first one (except for very small T 0, i.e., when y
and z are nearly at the same range). Hence, we can keep only the second (dominant) term for S and obtain
using (A.7), (A.8), and (A.18):

|max(W −W(RA))|
|maxW(RA)|

∼ 1

Nτ

N

2ω0
2ατ2 =

1

2

B

ω0
. (A.19)

Formula (A.19) provides an estimate for the relative error due to the factorization (A.6)–(A.8) or, equiv-
alently, (2.34)–(2.36). This error may be on the order of a few percent depending on the value of the relative
bandwidth B

ω0
. It is interesting to note that according to (A.18), the dominant term of this error vanishes

if either y2 = z2 or y1 = 0 (the latter is equivalent to y1 = z1). The key to understanding this effect is the
expression for Tn in (A.12)–(A.13). Physically, Tn is the difference between the pulse two-way travel time
for the pairs (xn,y) and (xn, z ). As a function of the satellite position n, Tn has a constant part T 0 and
a part Tn which is linear in n. It is the variation of the range PSF sinc(2ατnTn) with n in formula (A.5)
that is responsible for the leading term of the factorization error. If y2 = z2, then the constant part of Tn

vanishes and so does the PSF tangent slope given by sinc′(2ατ0T 0). Hence, the leading term of the varia-
tion of the PSF magnitude disappears. If, however, y1 = 0 (or y1 = z1), then it is the leading term of the
variation of Tn with n that vanishes [Tn ≡ 0, see (A.13)], and so does the leading term of the variation
of sinc(2ατnTn) regardless of the value of 2ατ0T 0. Only in the general “diagonal” configuration y1 6= z1,
y2 6= z2 the coupling between the range and azimuthal terms is significant, yielding the error (A.18).
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Appendix B

Propagation of SAR signals in a
lossless homogeneous plasma

We are interested in obtaining a spherically symmetric solution similar to the retarded potential (2.21), but
for the case of a dispersive propagation governed by the Klein-Gordon equation (2.8) with ωpe = const. Let
r = |z − x | denote the radial coordinate in the spherical system centered at x ∈ R3, which is the location
of the antenna (we are using the notations of Section 2.3), and let ϕ = ϕ(t, r) be a spherically symmetric
solution of equation (2.8). Introduce a new function φ = φ(t, r), such that ϕ(t, r) = φ(t, r)/r. Then, φ(t, r)
satisfies the one-dimensional Klein-Gordon equation:

∂2φ

∂t2
− c2 ∂

2φ

∂r2
+ ω2

peφ = 0, r ≥ 0. (B.1)

Hence, we need to look into the propagation of pulses governed by equation (B.1).
Assume that a pulse of shape P (t) is given at r = 0 (location of the antenna); for example, it can be the

high-range resolution upchirp (2.18):

P (t) =
1

4π
χτ (t)ei(ω0+Bt

2τ )t, (B.2)

where ω0 is the center carrier frequency, B is the angular bandwidth, and τ is the duration of the chirp.
The factor 1/4π in (B.2) accounts for the difference between the one-dimensional and three-dimensional
delta-functions δ(r) and δ(x1, x2, x3) that excite the pulse at the origin.

A Fourier transform in time of the pulse (B.2) is expressed via the erf functions:

P̂ (ω) =
1

2π

τ/2∫
−τ/2

1

4π
ei(ω0+Bt

2τ )t−iωtdt =
1

8π2

τ/2∫
−τ/2

eiαt
2+iβtdt

= − 1

8π2

√
π

2
√
α
e−i

β2

4α+iπ4

[
erf

(√
−i(β − ατ)

2
√
α

)
− erf

(√
−i(β + ατ)

2
√
α

)]
,

(B.3)

where α = B
2τ is the chrip rate, and β = ω0 − ω. To simplify expression (B.3), we need to analyze the

arguments of the erf functions. Denote

η± =
β ± ατ
2
√
α

=
ω0 − ω ±B/2√

2B/τ
(B.4)

and consider several cases. First, let ω ∈ [ω0−B/2, ω0 +B/2] and in addition suppose that ω is not too close
to either endpoint, ω0−B/2 or ω0 +B/2. In other words, suppose that the numerator on the right-hand side
of (B.4) is of the same order of magnitude as the bandwidth, i.e., |ω0−ω±B/2| ∼ B. Then, |η±| ∼

√
Bτ/2,

and for the typical values of the parameters involved (see Table 1.1) this quantity is approximately 35.4.
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We can therefore evaluate the erf functions on the right-hand side of (B.3) by the stationary phase method.
Indeed,

erf(
√
−iη±) =

2√
π

√
−iη±∫
0

e−z
2

dz =
2
√
−i√
π
η±

1∫
0

eiη
2
±u

2

du =
2
√
−i√
π
η±

[ 1∫
0

fδ(u)eiη
2
±u

2

du+O(δ)

]
,

where fδ(u) is a specially chosen auxiliary function such that fδ ∈ C∞[0, 1], f
(k)
δ (1) = 0 for all k = 0, 1, 2, . . .,

and fδ(u) ≡ 1 for u ∈ [0, 1− δ], where δ > 0 can be arbitrarily small. Then, assuming that η2
± is sufficiently

large, we can apply the Erdélyi lemma [102], [103, Chapter 1] to the last integral in the previous formula,
and by dropping the O(δ) term and choosing the branch of the square root such that 0 < arg (

√
z) ≤ π,

obtain:

erf(
√
−iη±) ≈ 2

√
−i√
π
η±

1∫
0

fδ(u)eiη
2
±u

2

du ≈ 2
√
−i√
π
η±

Γ( 1
2 )

2
ei
π
4

(
η2
±
)−1/2

= − η±
|η±|

.

In doing so we note that in this particular case the asymptotic expansion given by the Erdélyi lemma actually
converges because all of its terms except for the leading term happen to be exactly equal to zero. Altogether,
if ω is inside the interval [ω0 −B/2, ω0 +B/2] and not too close to its endpoints, then we have:

P̂ (ω) ≈ − 1

8π2

√
π

2
√
α
e−i

β2

4α+iπ4

[
− η−
|η−|

+
η+

|η+|︸ ︷︷ ︸
=2

]
= − 1

8π2

√
π√
α
e−i

β2

4α+iπ4 , (B.5)

since in this case η− is always negative, and η+ is always positive.
Next, let ω be outside the interval [ω0−B/2, ω0 +B/2] and again, not too close to either of its endpoints.

Then, we can apply the exact same reasoning as before and obtain:

P̂ (ω) ≈ − 1

8π2

√
π

2
√
α
e−i

β2

4α+iπ4

[
− η−
|η−|

+
η+

|η+|︸ ︷︷ ︸
=0

]
= 0, (B.6)

because unlike in formula (B.5), now both η− and η+ have the same sign.
Finally, we need to consider the case when ω is close to one of the endpoints of the interval [ω0−B/2, ω0 +

B/2], i.e., |ω0 − ω − B/2| � B or |ω0 − ω + B/2| � B. For example, if ω is close to the left endpoint so
that |ω0−ω−B/2| is small, then erf(

√
−iη−), see formulae (B.3) and (B.4), can be evaluated using the first

order Taylor expansion for erf, whereas erf(
√
−iη+) should still be computed with the help of the Erdélyi

lemma, which altogether yields:

P̂ (ω) = − 1

8π2

√
π

2
√
α
e−i

β2

4α+iπ4

[ √
−i√
π
√
α

(ω0 − ω −B/2) + 1

]
. (B.7)

Expression (B.7) is valid not everywhere, but only when the term in the round brackets is small. Hereafter,
we will leave out the foregoing transient case, |ω0 − ω−B/2| � B or |ω0 − ω+B/2| � B, and evaluate the
Fourier transform P̂ (ω) only by combining (B.5) and (B.6). Then the resulting transform P̂ (ω) approximately
represents the chirp at t = 0 as a superposition of sinusoidal harmonics with different frequencies:

P̂ (ω) ≈

− 1
8π2

√
π√
α
e−i

β2

4α+iπ4 , if ω ∈ [ω0 −B/2, ω0 +B/2],

0, if ω 6∈ [ω0 −B/2, ω0 +B/2].
(B.8)

Each of the frequencies ω that compose the spectrum in (B.8), or, rather, each of the harmonics eiωt,
propagates with its own phase velocity of (2.44). Indeed, the propagating pulse φ(t, r) that has covered the
distance r from the origin can be written as the inverse Fourier transform [67, Chapter I], which, according
to (2.4), immediately leads to the introduction of the phase velocity vph = ω/k in the exponent:

φ(t, r) =

ω0+B/2∫
ω0−B/2

P̂ (ω)ei(ωt−kr)dω =

ω0+B/2∫
ω0−B/2

P̂ (ω)eiω(t−r/vph)dω. (B.9)
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In (B.9), the phase velocity vph and wavenumber k are assumed to be the functions of the frequency ω
defined by the dispersion relation (2.3). Introducing

1

vph0

=
k

ω

∣∣∣∣
ω0

and
1

vgr0

=
dk

dω

∣∣∣∣
ω0

(B.10)

and using (2.3) and (2.44), we can approximately represent (ωt−kr) in (B.9) by means of the Taylor formula:

ωt− kr = ω
(
t− r

vph(ω)

)
≈ (ω0 + β)

[
t− r

( 1

vph
+ β

d

dω

1

vph
+
β2

2

d2

dω2

1

vph

)∣∣∣∣
ω0

]
= ω0

(
t− r

vph0

)
+ bβ − rb2β2,

(B.11)

where

b = t− r

vph0

− ω0r
d

dω

1

vph

∣∣∣∣
ω0

= t− r

vgr0

,

b2 =
d

dω

1

vph

∣∣∣∣
ω0

+
ω0

2

d2

dω2

1

vph

∣∣∣∣
ω0

≈ − 1

2c

ω2
pe

ω3
0

.

(B.12)

Substituting (B.11) and (B.12) into (B.9) and changing the integral over ω to that over β, we get:

φ(t, z) = − 1

8π2

√
π√
α
ei
π
4

B/2∫
−B/2

e−i
τ

2B β
2

eiω0(t−r/vph0
)eibβ−irb2β

2

dβ

= − 1

8π2

√
π√
α
ei
π
4 eiω0(t−r/vph0

)

B/2∫
−B/2

e−iaβ
2+ibβdβ

= − 1

8π2

√
π√
α
ei
π
4

√
π

2
√
a
ei
b2

4a e−i
π
4 eiω0(t−r/vph0

)

[
erf

(√
i(b+ aB)

2
√
a

)
− erf

(√
i(b− aB)

2
√
a

)]

=
1

16π
√
α
√
a
eiω0(t−r/vph0

)ei
b2

4a

[
erf

(√
i(b− aB)

2
√
a

)
− erf

(√
i(b+ aB)

2
√
a

)]
,

(B.13)

where

a =
τ

2B
+ rb2 ≡

τ

2B
− 1

2

r

c

ω2
pe

ω3
0

(B.14)

and the branch of the square root is chosen such that | arg(·)| 6 π.
Using a stationary phase argument one more time, it has been shown in [1, Appendix A] and (B.4)–(B.6)

that the difference of the two erf functions in the last line of (B.13) is equal to 2 if the value of b is within
the interval of (−aB, aB), and zero otherwise.1 Introducing

η∗± =
b± aB

2
√
a
, (B.15)

we can rewrite this difference as follows:

[erf(
√
iη∗−)− erf(

√
iη∗+)] = 2χτ ′(b), (B.16)

where χ is the indicator function defined in (2.18), and

τ ′
def
= 2aB = τ − r

c

ω2
pe

ω2
0

B

ω0
= τ − δτ (B.17)

1Although the integral in the second line of (B.13) is algebraically of the same type as that in (2.66), the analysis of
Section 2.4 does not apply here because the QPE for (B.13) is not small: φqB ≈ Bτ/8� 1.
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is a new pulse length. Accordingly, the quantity

α′
def
=

1

4a
=

B

2τ ′
≈ B

2τ

(
1 +

δτ

τ

)
= α+ δα (B.18)

becomes a new chirp rate [see the second exponent in the last line of (B.13)].
Altogether, combining formulae (B.13)–(B.18), using the notation of (2.18), and recalling that ϕ(t, r) =

φ(t, r)/r, we obtain the spherically symmetric propagating pulse in the form:

ϕ(t, r) =
1

4πr
eiω0(t−r/vph0

)χτ ′(t− r/vgr0)eiα
′(t−r/vgr0)2

def
=

1

4πr
A′(t− r/vgr0)eiω0(t−r/vph0

).

(B.19)

Remark. Leaving out the transients that correspond to the endpoints of the pulse and its spectrum when
using the stationary phase method is equivalent to disregarding the so-called precursors, see [7, Section 21]
or [104]. In other words, we are focusing on the propagation of the main body of the pulse because it is the
main body of the pulse that is used for building the generalized ambiguity function in Section 2.4.

Remark. The observation that τ ′ < τ (and, consequently, α′ > α) for an upchirp [α > 0, see (2.18)] agrees
with the formula for the group velocity in (2.43). Indeed, for an upchirp the slower propagating low-frequency
harmonics are emitted first and the faster propagating high-frequency harmonics are emitted last. Hence,
the “tail” of the chirp travels faster than its “head,” which results in the pulse compression. The situation
for the downchirp (α < 0) will be the opposite: it will get dilated rather than compressed, τ ′ > τ , while its
absolute rate will become lower rather than higher, |α′| < |α| (see also [32, Figure 1]).

Remark. Using expressions (B.9) and (2.35), one can represent the range factor of the GAF as a double
integral in frequency ω and fast time t. In work [13], the authors adopt this approach and consider Gaussian
pulses, which allows them to express the integrals over t and ω in elementary functions. For the rectangular
chirp (2.18), this method would still yield the erf functions at the first step (integration over t), and will
thus have no advantage over the one used in the current work.



Appendix C

Travel times in the deterministic
inhomogeneous ionosphere

In this section, the quantities Ne = Ne(h) and ωpe = ωpe(h) are assumed to have no random component.
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(a) With no correction of the look angle.
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(b) With the correction of the look angle.

Figure C.1: Schematic waves’ travel paths between the antenna and the target in the inhomogeneous iono-
sphere.

Suppose that the antenna is positioned at x = 0 and has altitude H above the Earth. It sends a signal
toward the target z on the ground, see Figure C.1(a), so that the look angle to the target is equal to θ0 and
as such, Rz = H/ cos θ0. As the medium is lossless (collisionless dilute plasma with no Ohm conductivity,
see Section 2.2), its electric permittivity is real:

ε(h) = 1−
ω2

pe(h)

ω2
, where ω2

pe(h) =
4πe2Ne(h)

me
, (C.1)

and we can write Snell’s law (for plane waves) in the continuous form [7, Sec. 19] as follows:

n(h) sin θ(h) = n(H) sin θ0, (C.2)
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where the refraction index is given by

n(h) =
√
ε(h) =

√
1−

ω2
pe(h)

ω2
. (C.3)

The angle θ(h) in formula (C.2) is the angle that the tangent to the wave trajectory at a given altitude h
makes with the negative ordinate axis, see Figure C.1(a). Then, at every point on the trajectory we can
write with the help of equation (C.2):

dx

dh
= − tan θ(h) = −n(h) sin θ(h)

n(h) cos θ(h)
= − n(H) sin θ0

n(h) cos θ(h)
= − n(H) sin θ0√

n2(h)− n2(H) sin2 θ0

. (C.4)

Hence, the actual trajectory can be obtained by integrating equality (C.4):

x(h) =

h∫
H

dx

dh
dh =

H∫
h

n(H) sin θ0√
n2(h)− n2(H) sin2 θ0

dh. (C.5)

However, for the general dependence Ne = Ne(h), the integration in (C.5) is not easy to perform. On the
other hand, we can simplify formula (C.4) by taking into account that all the ionospheric corrections are
small, and employing the first order Taylor expansion with respect to ω2

pe/ω
2:

dx

dh
=−

√
1− ω2

pe(H)

ω2 sin θ0√
1− ω2

pe(h)

ω2 −
(

1− ω2
pe(H)

ω2

)
sin2 θ0

≈ −

(
1− 1

2

ω2
pe(H)

ω2

)
sin θ0√

cos2 θ0 +
ω2

pe(H) sin2 θ0−ω2
pe(h)

ω2

(C.6)

≈− tan θ0

(
1− 1

2

ω2
pe(H)

ω2

)(
1− 1

2

ω2
pe(H) sin2 θ0 − ω2

pe(h)

ω2 cos2 θ0

)

≈− tan θ0

(
1− 1

2

ω2
pe(H)− ω2

pe(h)

ω2 cos2 θ0

)
.

The integration of equation (C.5) yields:

x(h, θ0) =

h∫
H

− tan θ0

(
1− 1

2

ω2
pe(H)− ω2

pe(h)

ω2 cos2 θ0

)
dh

= (H − h) tan θ0 +
1

2

4πe2

me

tan θ0

ω2 cos2 θ0

( H∫
h

Ne(h)dh− (H − h)Ne(H)

)
.

(C.7)

The shape of the curve (C.7) is determined by the profile of the electron number density Ne = Ne(h). The
curve is also parameterized by the look angle θ0 at the location of the antenna. With no variation in the
electron number density, Ne(h) ≡ Ne(H), formula (C.7) yields a straight line between the antenna and the
target:

x(h) = (H − h) tan θ0. (C.8)

As, however, Ne(h) is not constant, the ray that originates at the antenna under the look angle θ0 will not,
generally speaking, come to the target, see Figure C.1(a). To have this ray come to the target, we need to
correct the look angle, see Figure C.1(b).

Let θ1 be the new look angle. We substitute it into formula (C.7) instead of θ0, and require that
x(0, θ1) = H tan θ0. In other words, we require that the wave trajectory that originates at the antenna under
the new look angle θ1 terminate precisely at the target z on the ground, see Figure C.1(b). We have:1

x(0, θ1) = H tan θ1 +
1

2

4πe2

me

NH −Ne(H)H

ω2 cos2 θ1
tan θ1 = H tan θ0, (C.9)

1Formula (C.9) corrects formula (D.2) from the previous publication on the subject [8] (page 177), in which there was an
arithmetic error.
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where NH is an important characteristic of the ionosphere — the integral of its electron number density
across the layer of thickness H, as defined in (2.54):

NH
def
=

H∫
0

Ne(h)dh.

Formula (C.9) is an equation for θ1. Let us now introduce a new notation K for brevity:

K =
1

2

4πe2

me

NH −Ne(H)H

ω2
(C.10)

and recast equation (C.9) as

H tan θ1 +
K

cos2 θ1
tan θ1 = H tan θ0. (C.11)

Then, assuming that θ1 = θ0 + δθ, where δθ � θ0, we can use the first order Taylor formula and write:

tan θ1 ≈ tan θ0 +
δθ

cos2 θ0
and

1

cos2 θ1
≈ 1

cos2 θ0
(1 + 2 tan θ0δθ).

Substituting these expressions into equation (C.11), we arrive at

H
δθ

cos2 θ0
+

K

cos2 θ0
(1 + 2 tan θ0δθ)

(
tan θ0 +

δθ

cos2 θ0

)
= 0.

In the previous equation, we keep only linear terms with respect to δθ:

Hδθ +K tan θ0 +K
2 sin2 θ0 + 1

cos2 θ0
δθ = 0,

which yields:

δθ = − K tan θ0

H +K 2 sin2 θ0+1
cos2 θ0

= −K tan θ0

H

1

1 + K
H

2 sin2 θ0+1
cos2 θ0

≈ −K tan θ0

H

(
1− K

H

2 sin2 θ0 + 1

cos2 θ0

)
, (C.12)

because according to formula (C.10), the quotient K/H is small, K/H ∼ ω2
pe/ω

2 � 1. Our subsequent
analysis shows that the second term in parentheses on the right-hand side of (C.12) can be disregarded.

Let s denote the arc length of the pulse trajectory. Then, using formula (C.4) and keeping only first
order terms in the Taylor expansion, we can write:

ds

dh
=

√
1 +

(
dx

dh

)2

=

√
n2(h)

n2(h)− n2(H) sin2 θ0

≈ 1

cos θ0

(
1 +

1

2

ω2
pe(h)− ω2

pe(H)

ω2
tan2 θ0

)
. (C.13)

Consequently, the total length of the trajectory which originates at the angle θ1 and is shown in Figure C.1(b)
is given by

S =

H∫
0

ds(θ1)

dh
dh =

1

cos θ1

(
H +

1

2

4πe2

me

NH − ω2
pe(H)H

ω2
tan2 θ1

)
=

H

cos θ1

(
1 +

K

H
tan2 θ1

)
. (C.14)

For the trigonometric functions in formula (C.14), we can use (C.12) and write:

1

cos θ1
≈ 1

cos θ0
(1 + tan θ0δθ) ≈

1

cos θ0

[
1− K tan2 θ0

H

(
1− K

H

2 sin2 θ0 + 1

cos2 θ0

)]
≈ 1

cos θ0

[
1− K tan2 θ0

H

]
and

tan2 θ1 ≈ tan2 θ0 +
2 tan θ0
cos2 θ0

δθ ≈ tan2 θ0 −
K

H

2 tan2 θ0
cos2 θ0

(
1− K

H

2 sin2 θ0 + 1

cos2 θ0

)
≈ tan2 θ0 −

K

H

2 tan2 θ0
cos2 θ0

.
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On the right-hand side of the previous equalities, we have dropped the terms of order K2/H2, because
K/H � 1, and hence the quantities quadratic with respect to K/H are negligible. We could have arrived at
the same result if we dropped the second term in parentheses on the right-hand side of the last equality in
formula (C.12) ahead of time. Substituting the previous two expressions back into formula (C.14), we have:

S =
H

cos θ0

[
1− K

H
tan2 θ0

]
·
[
1 +

K

H

(
tan2 θ0 −

K

H

2 tan2 θ0

cos2 θ0

)]
=

H

cos θ0

[
1 +O

(
K2

H2

)]
. (C.15)

Formula (C.15) implies that up to the negligibly small additive terms of order K2/H2, the length of the pulse
trajectory between the antenna x and the target z , see Figure C.1(b), is equal to the length of a straight
line that connects the antenna and the target:

S ≈ H

cos θ0
= |z − x | = Rz . (C.16)

The travel time along the trajectory (C.5) is given by the integral

T =

H∫
0

dt

dh
dh =

H∫
0

1

v(h)

ds

dh
dh, (C.17)

where v(h) = v(ω, ωpe(h)) can be either the group velocity (2.43) or the phase velocity (2.44), and the
quantity ds

dh is given by equation (C.13). For the case of group velocity, formula (C.17) yields:

Tgr(x , z , ω) ≈
H∫

0

1

c

(
1− 1

2

ω2
pe(h)

ω2

)−1
1

cos θ1

(
1 +

1

2

ω2
pe(h)− ω2

pe(H)

ω2
tan2 θ1

)
dh

≈ 1

c · cos θ1

H∫
0

(
1 +

1

2

ω2
pe(h)

ω2
+

1

2

ω2
pe(h)− ω2

pe(H)

ω2
tan2 θ1

)
dh,

(C.18)

because we are disregarding all the terms of higher order than linear with respect to ω2
pe/ω

2. Formula (C.18),
along with formulae (C.14) and (C.16), imply that

Tgr(x , z , ω) ≈ S

c
+

1

c · cos θ1

H∫
0

1

2

ω2
pe(h)

ω2
dh

=
H

c · cos θ0
+

1

c · cos θ0

[
1− K tan2 θ0

H

]
1

2

4πe2

me

NH
ω2

≈ H

c · cos θ0

(
1 +

1

2

4πe2

meω2

NH
H

)
=
Rz

c

(
1 +

1

2

4πe2

meω2

NH
H

)
,

(C.19)

where we have again dropped the terms higher than first order with respect to K/H ∼ ω2
pe/ω

2. Formula
(C.19) yields a final expression for the group travel time of a high frequency, ω � ωpe, radar pulse between
the antenna and the target in an inhomogeneous deterministic ionosphere. Let us also recall that in our
linearized framework the length of the pulse trajectory is equal to that of a straight segment between the
antenna and the target, S = Rz , because all the corrections are quadratic, see formulae (C.15) and (C.16).
Hence, formula (C.19) could have been obtained merely as [cf. formula (C.17)]

Tgr(x , z , ω) =

Rz∫
0

ds

vgr(h)
=

1

cos θ0

H∫
0

dh

vgr(h)

≈ 1

c · cos θ0

H∫
0

(
1 +

1

2

ω2
pe(h)

ω2

)
dh =

Rz

c

(
1 +

1

2

4πe2

meω2

NH
H

)
.

(C.20)
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Formula (C.20) can be interpreted in the context of the perturbation theory. Namely, the unperturbed pulse
trajectory is a straight line. To get the first order perturbation for the group travel time, we integrate the
reciprocal of the perturbed group velocity along the unperturbed trajectory.

As concerns the phase travel time, we just need to notice that the linearized group and phase velocities
differ only by the sign of the ∼ ω2

pe/ω
2 correction, see formulae (2.43) and (2.44). Hence, we have:

Tph(x , z , ω) ≈ Rz

c

(
1− 1

2

4πe2

meω2

NH
H

)
. (C.21)
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Appendix D

Travel times in the stochastic
ionosphere

The analysis of Appendix C indicates that we can use the geometrical optics perturbation method (see [46,
Ch. I] for more detail) to derive the travel times of radar pulses in the turbulent ionosphere as well. In this
case, the electron number density is a quasi-homogeneous random field [see formula (2.9)]:

Ne = 〈Ne(h)〉+ µ(x ), (D.1)

and the dependence of µ on x in formula (D.1) means that µ depends on all spatial coordinates, x ∈ R3.
Next, with no loss of generality, we can assume that the propagation plane (x, h) is fixed, see Figure C.1,

and consider only two independent spatial variables. Moreover, recall that the random contribution to
the electron number density is generally small compared to the deterministic part, because the quantity
M =

√
〈µ2〉/〈Ne〉 introduced by formula (2.11) is small, see [43]. Consequently, we can still linearize with

respect to the terms of order ω2
pe/ω

2 as done in Appendix C (high frequency regime), and write down the
equation for the pulse trajectory similar to equation (C.6), but with µ = µ(x, h) taken into account:

dx

dh
≈ − tan θ0

(
1− 1

2

4πe2

me

(〈Ne(H)〉 − 〈Ne(h)〉) + (µ(0, H)− µ(x, h))

ω2 cos2 θ0

)
. (D.2)

Equation (D.2) is a first order ordinary differential equation that will be solved (approximately) by the
perturbation method. First, we represent the solution in the form of a series:

x(h) = x(0)(h) + x(1)(h) + . . . ,

assuming that x(0) ∼ 1 and x(1) ∼ ω2
pe/ω

2, where ω2
pe/ω

2 is the small parameter for the asymptotic expan-
sion.1 Then, from equation (D.2) we immediately obtain the zeroth order contribution to the solution:

x(0)(h) =

h∫
H

− tan θ0dh = (H − h) tan θ0, (D.3)

which is a straight line between the antenna and the target, see Figure C.1 [also see formula (C.8)]. For the
first order correction, equation (D.2) yields:

dx(1)

dh
= tan θ0

1

2

4πe2

me

(〈Ne(H)〉 − 〈Ne(h)〉) + (µ(0, H)− µ(x(0)(h), h))

ω2 cos2 θ0
. (D.4)

1 We do not formally introduce the second perturbation parameter, which would be of the order 4πe2

me

√
〈µ2〉
ω2 �

ω2
pe

ω2 , because

the quantity M of (2.11) is an altitude-independent constant, and hence the two parameters would be related to one another.
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Integrating equation (D.4) between H and h, we obtain:

x(1)(h) =
1

2

4πe2

me

tan θ0

ω2 cos2 θ0

[( H∫
h

〈Ne(h)〉dh− (H − h)〈Ne(H)〉

)

+

( H∫
h

µ(x(0)(h), h)dh− (H − h)µ(0, H)

)]
.

(D.5)

If µ = 0, then combining the zeroth order contribution (D.3) with the first order correction (D.5), we arrive
at the previously obtained deterministic solution (C.7). Otherwise, for the solution x(h) = x(0)(h) + x(1)(h)
given by (D.3), (D.5) but with the adjusted look angle θ1 we can write similarly to (C.9) and (C.11):

x(0, θ1) = H tan θ1 +
K

cos2 θ1
tan θ1 = H tan θ0, (D.6)

where the quantities K of (C.10) and NH of (C) are redefined as follows:

K =
1

2

4πe2

meω2

[
(NH − 〈Ne(H)〉H)︸ ︷︷ ︸

deterministic part

+

( H∫
0

µ(x(0)(h), h))dh− µ(0, H)H

)
︸ ︷︷ ︸

stochastic part

]
= 〈K〉+ η (D.7)

and

NH
def
=

H∫
0

〈Ne(h)〉dh. (D.8)

Since
√
〈η2〉 < 〈K〉 or even

√
〈η2〉 � 〈K〉 [see the discussion right after equation (2.11)], and 〈K〉/H � 1,

we can employ the same argument as in Appendix C and show using equation (D.6) that for any particular
realization of µ the look angle increment δθ = θ1 − θ0 will be given by the same expression (C.12), but with

K and N
(H)
e defined by (D.7) and (D.8), respectively.

The arc length along the pulse trajectory with the look angle θ1 can be found by integrating the differential
equation [cf. formulae (C.13), (C.14)]:

ds

dh
=

1

cos θ1

(
1 +

1

2

4πe2

me

(〈Ne(H)〉 − 〈Ne(h)〉) + (µ(0, H)− µ(x, h))

ω2
tan2 θ1

)
. (D.9)

To integrate equation (D.9) we can again use the perturbation method. Representing s(h) in the form

s(h) = s(0)(h) + s(1)(h) + . . . ,

we have the zeroth order term:

s(0)(h) =
H − h
cos θ1

(D.10)

and the first order term:

s(1)(h) =
1

2

4πe2

me

tan2 θ1

ω2 cos θ1

[( H∫
h

〈Ne(h)〉dh− (H − h)〈Ne(H)〉

)

+

( H∫
h

µ(x(0)(h), h)dh− (H − h)µ(0, H)

)]
.

(D.11)
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To obtain the full length of the trajectory we substitute h = 0 into formulae (D.10) and (D.11), and also use
formula (D.7), which yields:

S = s(0)(0) + s(1)(0) =
H

cos θ1

(
1 +

K

H
tan2 θ1

)
. (D.12)

Expression (D.12) formally coincides with (C.14), only the definition of K is different. Consequently, we can
repeat the argument from Appendix C and show that for every particular realization of µ the total length S
of the pulse trajectory will be equal to that of a straight line between the antenna and the target, up to the
terms of order 〈K〉2/H2 that are negligible, see formulae (C.15) and (C.16):

S =
H

cos θ0

[
1 +O

(
〈K〉2

H2

)]
≈ H

cos θ0
= Rz . (D.13)

Finally, to obtain the group travel time, we need to integrate the following ordinary differential equation:

dt

dh
=

1

vgr(x, h)

ds

dh
=

1

c

(
1− 1

2

4πe2

me

〈Ne(h)〉+ µ(x, h)

ω2

)−1

· 1

cos θ1

(
1 +

1

2

4πe2

me

(〈Ne(H)〉 − 〈Ne(h)〉) + (µ(0, H)− µ(x, h))
ω2

tan2 θ1

)
(D.14)

≈ 1

c · cos θ1

(
1 +

1

2

4πe2

me

〈Ne(h)〉+ µ(x, h)

ω2
+

1

2

4πe2

me

(〈Ne(H)〉 − 〈Ne(h)〉) + (µ(0, H)− µ(x, h))
ω2

tan2 θ1

)
.

As according to formula (D.13) the shape of the trajectory will not contribute to the travel time in the
linearized framework, the integration of equation (D.14) by means of the perturbation method yields:

Tgr(x , z , ω) =
H

c · cos θ0

[
1 +

1

2

4πe2

meω2

(
NH
H

+
1

H

H∫
0

µ(x(0)(h), h)dh

)]

=
Rz

c

[
1 +

1

2

4πe2

meω2

(
NH
H

+
1

Rz

Rz∫
0

µ(s)ds

)]
.

(D.15)

When deriving formula (D.15), we took into account that the look angle increment is small, δθ ∼ 〈K〉/H,
as we did when deriving formula (C.19). We also note that the last integral in formula (D.15) shall be
interpreted as taken along the unperturbed straight trajectory.

The phase travel time, as before, is obtained by changing the sign [cf. formula (C.21)]:

Tph(x , z , ω) =
Rz

c

[
1− 1

2

4πe2

meω2

(
NH
H

+
1

Rz

Rz∫
0

µ(s)ds

)]
. (D.16)
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Appendix E

Propagation of SAR signals in a
plasma with losses

Ohmic losses in the ionosphere are due to the collisions of particles. Let νe > 0 denote the effective collision
frequency [7]. Then, the dielectric constant of the ionospheric plasma is given by the following expression
[cf. formula (2.7)]:

k2c2

ω2
= ε′ = 1−

ω2
pe

ω(ω − iνe)
. (E.1)

The value of νe in the ionosphere depends on the altitude, solar activity, and the time of the day, but
generally it does not exceed 105Hz [7, 105], i.e., νe � ω. Under this condition, the solution k∗ = k∗(ω) to
equation (E.1) will have a small imaginary part:1

k∗ =
ω

c

(
1− 1

2

ω2
pe

ω2
− i

2

ω2
pe

ω2

νe
ω

)
.

Similarly, the expressions in (B.10), (B.12), and (B.14) will all acquire small imaginary parts proportional
to νe:

1

v∗ph0

=
1

vph0

− i

2

1

c

νeω
2
pe

ω3
0

,

b∗ = b− i r
c

νeω
2
pe

2ω3
0

,

b∗2 = b2 − i
3

2

νeω
2
pe

cω4
0

,

a∗ =
τ

2B
+ rb∗2 = a− i3

2

νer

c

ω2
pe

ω4
0

.

(E.2)

The reasoning in Appendix B that leads to formula (B.13) will hold in the lossy case with the replacement
of the variables (a, b, b2, vph0) by (a∗, b∗, b∗2, v

∗
ph0

) given by (E.2). The overall effect of complexity in (E.2) is
as follows. First, it causes a gradual exponential attenuation of the propagating wave:

eiω0(t−r/v∗ph0
) = eiω0(t−r/vph0

)e
− 1

2
r
c

νeω
2
pe

ω2
0 . (E.3)

Other than that, we can write:

ei
(b∗)2
4a∗ = ei

b2

4a ei
(

(b∗)2
4a∗ −

b2

4a

)
≈ ei b

2

4a e
i
(
− 2ib

4a
r
c

νeω
2
pe

2ω3
0

)
= ei

b2

4a e
b

2a
r
c

νeω
2
pe

2ω3
0 ,

1In this Appendix, the asterisk superscript will denote the quantities that pertain to the lossy case.
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and using (B.16), (B.17): |b| ≤ τ ′/2 = aB, conclude that the second exponent in the previous equality
satisfies: ∣∣∣∣∣ b2a rc νeω2

pe

2ω3
0

∣∣∣∣∣ ≤ 1

4

r

c

νeω
2
pe

ω2
0

B

ω0
.

The corresponding exponential function may be either decreasing or increasing, but either way the rate of
its amplitude change will be much slower than that in (E.3) because of an additional small factor B

ω0
� 1 in

the exponent.
Using (B.4), we can also introduce η∗± by substituting the corresponding complex quantities from (E.2),

and define δη±
def
= η∗± − η±, where

|δη±| ∼
1

2

√
2B

τ

r

c

νeω
2
pe

2ω3
� 1.

Then, for the difference between the erf functions of the complex argument η∗± and the real argument η± we
have: ∣∣∣erf

(√
i(η± + δη±)

)
− erf

(√
iη±
)∣∣∣ ≈ ∣∣∣∣ 2√

π
e−iη

2
± ·
√
iδη±

∣∣∣∣ =
2√
π
|δη±|.

Consequently, the total variation of the quantity [erf(
√
iη∗−)− erf(

√
iη∗+)] that appears in the “lossy” coun-

terpart of (B.13) will not exceed 4√
π
|δη±| by absolute value, which is a negligible contribution compared to

the value of 2 in the lossless case.
Altogether, using (E.3) and disregarding other effects of complexity, we obtain the following form of the

propagating signal in the case of a lossy plasma [cf. formula (B.19)]:

ϕ(t, r) ≈ 1

4πr
A′(t− r/vgr0)eiω0(t−r/vph0

)e
− 1

2
r
c

νeω
2
pe

ω2
0 . (E.4)



Appendix F

Time integration for the range
component of the ambiguity function

When calculating the range component of the ambiguity function, one deals with the integrals of the following
type (see (2.35))

WR(y , z ) =

∫
A(t− 2|y − x 0|/c)A(t− 2|z − x 0|/c)dt (F.1)

Here we provide a detailed account of how this integration is done and the corresponding resolution obtained.
We first do it in the non-dispersive case, and then in the dispersive case.

F.1 Non-dispersive case

Introduce

ty =
2|y − x 0|

c
; tz =

2|z − x 0|
c

(F.2)

and rewrite (F.1) with the help of (2.18) as

WR(y , z ) =

∫
e−iα(t−ty )2

χτ (t− ty )eiα(t−tz )2

χτ (t− tz ) dt (F.3)

The integration interval in (F.3) is determined by the intersection of the supports of the two χτ functions
in the integrand. Assume, for definiteness, that ty > tz and introduce new constants and a new integration
variable

tM =
ty + tz

2
; T =

ty − tz
2

> 0; u = t− tM (F.4)

such that the integration limits in (F.3) become symmetric about zero:

WR(y , z ) =

∫ τT /2

−τT /2
eibudu (F.5)

where
τT = τ − 2T ; b = 4Tα (F.6)

It should be noted that (F.5) is, accurate to notation differences, a special case of the integral appearing in
(A.5) for n = 0. Performing integration in (F.5) we get 1

WR(y , z ) = τT sinc
(bτT

2

)
(F.7)

1Formula (F.7) corrects [5, Equations (45–46)] in that it eliminates a bogus phase multiplier eiα(R
2
z−R

2
y )/c

2

(for |Ry −Rz | ∼
c/B, this phase is about R/(cτ) � 1 by absolute value) and replaces τ with τT . The latter of these corrections can be
disregarded, as the subsequent analysis shows that |T | � τ .
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In order to determine the resolution, we find the first positive root of WR, which corresponds to

bτT
2

=
4Tα(τ − 2T )

2
= π (F.8)

We will determine T from (F.8). Although this is only a quadratic in T equation, we will solve it by iterations
assuming that T � τ (the solution T ≈ τ

2 is not relevant). So,

T = T1 + T2

In order to find T1 we disregard 2T in the brackets in (F.8) to get

T1 =
2π

4ατ
=
π

B

and, indeed, |T1| � τ . This same relation can also be written as

π

B
≈ T =

ty − tz
2

=
Ry −Rz

c
=⇒ Ry −Rz ≈

πc

B
= ∆R

which also corresponds to [5, Equation(46)]. The second iteration is

2α
( π
B

+ T2

)(
τ − 2

π

B

)
= π

if the T 2
2 term is dropped which gives

T2 =
2π2

τ (B2 − 4απ)
≈ 1

τ
2
π2

B2
=
π

B

2π

Bτ
= T1

2π

Bτ
(F.9)

and demonstrates that |T2| � |T1| because Bτ � 1.
We see that in the non-dispersive case, setting the integration interval in (F.5) to (− τ2 ,

τ
2 ) results in a

“standard” expression for the the width of the main lobe of the ambiguity function, while introducing a
relative error of about 2π/(Bτ) compared to the more accurate calculations with the (− τT2 ,

τT
2 ) interval.

F.2 Dispersive case

The dispersive case differs from the non-dispersive case of (F.3) in the following:

1. The propagation speed is different from c;

2. The chirp rate of the incoming chirp is different from that of emitted, and

3. The incoming chirp duration is different from that of emitted.

These differences are expressed by the equation (2.60):

W ′R(y , z ) =

∫
A(t− 2|y − x 0|/c)A′2δ(t− 2|z − x 0|/v̄gr)dt (F.10)

where the group velocity is taken at ω = ω0. Accordingly, equations (F.2)–(F.4) turn into:

ty =
2|y − x 0|

c
; t′z =

2|z − x 0|
v̄gr(ω0)

t′M =
ty + t′z

2
; T ′ =

ty − t′z
2

; u′ = t− t′M

(F.11)

and

W ′R(y , z ) =

∫
e−iα(t−ty )2

χτ (t− ty )eiα
′′(t−t′z )2

χτ ′′(t− t′z ) dt

=

∫ min{τ/2+ty , τ
′′/2+t′z}

max{−τ/2+ty ,−τ ′′/2+t′z}
e−iα(t−ty )2

eiα
′′(t−t′z )2

dt

(F.12)
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(see (2.63)). The dispersive version of (F.5) is thus

W ′R(y , z )

∫ min{τ/2+T ′, τ ′′/2−T ′}

max{−τ/2+T ′,−τ ′′/2−T ′}
ei(α

′′−α)(u′)2

ei2T
′(α′′+α)u′ei(α

′′−α)(T ′)2

du′ (F.13)

Before proceeding with (F.13) we make a remark about the integration limits, in other words — about
the relation between the ends of the support intervals of χτ (t − ty ) and χτ ′′(t − t′z ) in (F.12). In the non-
dispersive case, see (F.3), the two intervals have equal lengths, so one interval can contain the second only
if these two intervals coincide, i.e., ty = tz . In the dispersive case, as the chirps have different lengths, one
chirp may contain the other for some ty 6= t′z . The condition for this is

|ty − t′z | <
|τ − τ ′′|

2
= |δτ |

In distance terms, it corresponds to

∆R ≈ 1

2
cδτ ∼ 10m ∼ ∆R

so, technically, in the analysis of resolution, this may lead to several different sets of expressions for the ends
of the integration interval:

(i) − τ
′′

2 + t′z < − τ2 + ty <
τ
2 + ty <

τ ′′

2 + t′z

(ii) − τ2 + ty < − τ
′′

2 + t′z <
τ
2 + ty <

τ ′′

2 + t′z

(iii) − τ
′′

2 + t′z < − τ2 + ty <
τ ′′

2 + t′z <
τ
2 + ty

(iv) − τ2 + ty < − τ
′′

2 + t′z <
τ ′′

2 + t′z <
τ
2 + ty .

We avoid considering these cases separately by analyzing the error due to the “symmetrization” of
the integration interval. In this symmetrization, we assume that the length of the received chirp is τ
rather than τ ′′ (as in the non-dispersive case). In so doing, we shift the limit(s) of integration by no more

than
∣∣∣ τ ′′−τ2

∣∣∣ = |δτ |. As the integrand in (F.12) is one by absolute value, the change of the value of the

integral due to these shifts does not exceed 2|δτ |. This is negligible compared to the height of the main lobe
in (F.7), which is about τ � 2|δτ |; the relative error is

eR =
2δτ

τ
≈ 0.3% (F.14)

for the parameter values given in Table 1.1. It turns out that this relative error is also small compared to
the parameters used to evaluate smearing of the main lobe in (2.72):

eR

(
|w1| bτ

2 =π

|w0| bτ
2 =0

)−1

≈ 2δτ

τ

2π2

τ2δα
=

2δα

α

2π2

τ2δα
=

8π2

Bτ
� 1

so, for the analysis in this report, the integration limits can be made symmetric as in (F.5). Thus, the
integral in (F.13) simplifies to

W ′R(y , z ) =

∫ τ ′T /2

−τ ′T /2
ei(α

′′−α)(u′)2

eib
′u′ei(α

′′−α)(T ′)2

du′ (F.15)

where we have assumed once again that T ′ > 0 and

τ ′T = τ − 2T ′; b′ = 2T ′(α+ α′′) (F.16)

[cf. (2.65–2.66)].
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The first exponent in the integrand in (F.15) contains a quadratic in u′ phase; this term results in the
smearing of the main lobe of W ′R, see Section 2.4. The phase in the third exponent is independent on u′;
assuming |T ′| ∼ 1/B, this phase is about

2δα|T ′|2 = 2
δα

B2
= 2

δα

α

α

B2
= 2

δτ

τ

B/2τ

B2
=
δτ

τ

1

Bτ
� 1

i.e., infinitisemal. With the first and third exponents in (F.15) dropped, the form of equations (F.15–F.16)
is similar to that of (F.5–F.6), so the analysis of resolution may follow the same pattern as that in the non-
dispersive case. In particular, the maximum of W ′R is achieved at T ′ = 0, which corresponds to (see (F.11))

Ry

c
− Rz

v̄gr
= 0 =⇒ Ry = Rz

c

v̄gr
≈ Rz

(
1 +

ω̄2
pe

2ω2
0

)
thus giving a shift in range, see (2.73).

To analyze resolution in the dispersive case, we solve

b′τ ′T
2

= T ′(α+ α′′)(τ − 2T ′) = π (F.17)

[cf. (F.8)] with respect to T ′ = T ′1 + T ′2 by iterations. First, we get

T ′1 =
π

B
= T1

and then, ( π
B

+ T ′2

)
(α+ α′′)

(
τ − 2

π

B

)
= π

Using α′′ = α+ 2δα we get

T ′2ατ +
π

B
τδα− 2α

( π
B

)2

= 0

which gives

T ′2 =
2

τ

π2

B2
− π

B

δα

α
= T1

( 2π

Bτ
− δτ

τ

)
(F.18)

Notice that the first term in (F.18) is equal to T2 in the non-dispersive case, see (F.9), so

T ′2 = T2 − T1
δτ

τ
(F.19)

Thus, the second term in (F.19) could be considered as the effect of dispersion on range resolution; this term
also coincides with that in (2.71). This second term however is of the same order as those ignored at the
symmetrization of the integration limits in (F.13), see (F.14), and is also not bigger than T2. Note that T2

is usually ignored in the expression for range resolution. Therefore the choice of integration limits for 2.63
is inconsequential to our analysis.

Remark. As it turns out, the case (i) on page 113 that is used in the main body of the report is invalid for
the linear upchirps that we use. This can be easily proven: We know from (2.64) that τ ′′ < τ . Now suppose

that τ
2 + ty <

τ ′′

2 + t′z . Then

−τ
2

+ ty < −
τ

2
+
τ ′′

2
− τ

2
+ t′z < −

τ

2
+ t′z < −

τ ′′

2
+ t′z .

However, as we have demonstrated, it is acceptable for our purposes. We choose to use it because it results
in the least cumbersome expressions.



Appendix G

Conditioning of the TEC found by
dual carrier probing

In this appendix, we investigate conditioning of formula (2.94). If the quantity f depends on x, then the
conditioning of f(x), i.e., the sensitivity of f to the perturbations of x, is naturally defined as the maximum
ratio of the relative error in f over the corresponding relative error in the input x, see [74, Chapter 1]:

sup
δx

|δf/f |
|δx/x|

≈ |f ′(x)| |x|
|f |
.

In formula (2.94), the dependent quantity f is ω̄2
pe, and the input data are R

(1)
y and R

(2)
y . Due to the obvious

symmetry, it is sufficient to estimate the conditioning with respect to either of the two, and hereafter we will

interpret R
(1)
y as the independent variable x. Then,

∂ω̄2
pe

∂R
(1)
y

=
2ω2

1ω
2
2

ω2
2R

(2)
y − ω2

1R
(1)
y

(
1 +

ω2
1(R

(1)
y −R(2)

y )

ω2
2R

(2)
y − ω2

1R
(1)
y

)
,

and hence the condition number of ω̄2
pe with respect to R

(1)
y is given by∣∣∣∣∣ ∂ω̄2

pe

∂R
(1)
y

R
(1)
y

ω̄2
pe

∣∣∣∣∣ =

∣∣∣∣∣ R
(1)
y

R
(1)
y −R(2)

y

+
ω2

1R
(1)
y

ω2
2R

(2)
y − ω2

1R
(1)
y

∣∣∣∣∣
6

R
(1)
y

|R(1)
y −R(2)

y |
+

ω2
1R

(1)
y

|ω2
2R

(2)
y − ω2

1R
(1)
y |

.

(G.1)

The first term on the right hand of (G.1) is large, because the ranges R
(1)
y and R

(2)
y are close to one

another and the difference between the two is much smaller than each of them. The second term is not too
large, because according to (2.93), the denominator ω2

2R
(2)
y − ω2

1R
(1)
y = Rz (ω2

2 − ω2
1), and consequently, the

entire fraction is of the order ω2
1/(ω

2
2 −ω2

1), which is about 5 when the difference between ω2 and ω1 is 10%.

To improve the overall conditioning of ω̄2
pe, one can use several reference locations: y1, y2, y3, . . ., or

features, instead of only one. Assume that we have computed ω̄2
pe(y1), ω̄2

pe(y2), ..., ω̄2
pe(yK) for K different

reference locations according to formula (2.94), and that we evaluate ω̄2
pe by plain averaging:

ω̄2
pe =

1

K

K∑
k=1

ω̄2
pe(yk). (G.2)

Note that as ω̄2
pe is a scalar quantity, formula (G.2) is equivalent to the least squares fit, see [74, Chapter 7].
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Let us now interpret ω̄2
pe(yk) as independent random variables with means 〈ω̄2

pe(yk)〉 and variances
σ2(ω̄2

pe(yk)), k = 1, 2, . . . ,K. Then (see, e.g., [77, Chapter 2]),

〈ω̄2
pe〉 =

1

K

K∑
k=1

〈ω̄2
pe(yk)〉 and σ2(ω̄2

pe) =
1

K2

K∑
k=1

σ2(ω̄2
pe(yk)) (G.3)

Assume in addition, and with no loss of generality, that the errors associated with computing the individual
ω̄2

pe(yk) are approximately equal to the corresponding standard deviations σ(ω̄2
pe(yk), and that these errors

are roughly the same for all k = 1, 2, . . . ,K. Then, the second equality in formula (G.3) indicates that the
overall error of evaluating ω̄2

pe according to (G.2) will decrease proportionally to K−1/2 as K increases.



Appendix H

Accuracy analysis of area-based image
registration

In this Appendix, we show how one can reduce the error of the area-based image registration due to the
discrete Fourier transform and due to noise. Possible misregistration due to different terrain reflectivity on
two different carrier frequencies belongs to neither of these two categories and is not discussed hereafter.
Note also that while we are proposing to use the area-based image registration for correcting the matched
filter in SAR signal processing, it is otherwise used routinely for SAR interferometry, see, e.g., [76]. Our
subsequent discussion focuses on one-dimensional signals for simplicity; the extension to two dimensions can
be found, e.g., in [34,35].

The phase correlation method is based on formula (2.111), which is written for two continuous one-
dimensional signals u(x) and v(x) defined on −∞ < x < ∞. In practice, however, the signals are discrete
rather than continuous, and their length is finite. Let us therefore introduce two sequences of length L:
{ul}L−1

l=0 and {vl}L−1
l=0 , and interpret them as traces of two continuous functions, u(x) and v(x) = u(x − s),

assuming s > 0, on a uniform grid of size T :1 ul ≡ u(xl) and vl ≡ v(xl), where xl = lT and l = 0, 1, . . . , L−1.
Clearly, the lower bound for T is the pixel size, whereas the upper bound for L is the total number of pixels
in those fragments of each image that are employed for registration. Instead of (2.111), we will use the
discrete Fourier transform (see, e.g., [74, Section 5.7]) of ul and vl (which assumes, in particular, that both
sequences are L-periodic):

ûk =
1√
L

L−1∑
l=0

ule
−ik 2π

LT xl =
1√
L

L−1∑
l=0

ule
−ik 2π

L l (H.1a)

and

v̂k =
1√
L

L−1∑
l=0

vle
−ik 2π

LT xl =
1√
L

L−1∑
l=0

u(xl − s)e−ik
2π
LT xl

=
1√
L

L−1∑
l=0

u(xl − s)e−ik
2π
LT (xl−s) · e−ik 2π

LT s ≈ ûke−ik
2π
LT s. (H.1b)

Note that the last equality of (H.1b) is only approximate rather than exact because of the error that may
appear if the shift s is not a multiple of the grid size T . For smooth periodic functions though, this error
can be shown to decay rapidly as L increases (see, e.g., the analysis in [74, Sections 3.1 and 4.1]), and we
therefore disregard it hereafter.

1In the image registration literature, the grid size T is often called the sampling rate, and accordingly, the grid dimension
(length of sequence) L is referred to as the number of samples, see, e.g., [75].
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Next, we build a discrete function similar to that of (2.112):

δ̃l
def
=

1√
L

L−1∑
k=0

û∗kv̂k
|û∗kv̂k|

eik
2π
LT xl =

1√
L

L−1∑
k=0

e−ik
2π
LT seik

2π
LT xl =

1√
L

L−1∑
k=0

eik
2π
L (l− s

T ). (H.2)

To analyze δ̃l of (H.2), we consider two cases: s
T is an integer and s

T is not an integer. First, let s
T = m ∈ N.

Then, from (H.2) we can derive:

δ̃l =
1√
L

L−1∑
k=0

eik
2π
L (l−m) =

{√
L, if l = m,

1√
L

1−ei2π(l−m)

1−ei
2π
L

(l−m)
= 0, if l 6= m.

In other words, if the shift s happens to be a shift by the integer number m of grid cells, then the function δ̃l
of (H.2) has a peak value of

√
L precisely at l = m, and is equal to zero everywhere else on the grid. Hence,

in this case the discrete version of phase correlation will yield the value of the shift exactly.
If s

T is not an integer, then using (H.2) and assuming that l is close to s
T we obtain:

δ̃l =
1√
L

1− ei2π(l− s
T )

1− ei
2π
L (l− s

T )

≈
√
L

2
eiπ(l− s

T ) e
−iπ(l− s

T ) − eiπ(l− s
T )

−iπ
(
l − s

T

) =
√
Leiπ(l− s

T ) sinπ
(
l − s

T

)
π
(
l − s

T

) ,

which means that the maximum absolute value of δ̃l is ∼
√
L, and it is attained at the grid node l closest to

s
T . At all other grid nodes, generally speaking, δ̃l 6= 0. Therefore, if s

T is not an integer, the best accuracy of

reconstructing the shift s that one can achieve by looking for the maximum of δ̃l of (H.2) is roughly T/2, i.e.,
at most half size of the pixel. Extension of this method to the accuracies on the order of a fraction of one
pixel may involve a certain interpolation procedure, see, e.g., [38], and also [36, 75]. The effects of aliasing
and aperiodicity can be reduced by filtering, see [34,35].

Another approach to further improving the accuracy of phase correlation is based on analyzing the phase
of ûk and v̂k of (H.1). Namely, it is easy to see from (H.1b) that

arg ûk − arg v̂k = k
2π

LT
s. (H.3)

Speaking formally, the value of s can be obtained from (H.3) by merely dividing the left-hand side of the
equality by k 2π

LT for any non-zero k:

s =
LT

2π

arg ûk − arg v̂k
k

. (H.4)

This formula, however, is prone to inaccuracies due to errors in the data arg ûk−arg v̂k. The way to improve
the accuracy is to obtain s by the method of least squares using all k’s rather than only one as in (H.4),
see [35,75]. Namely, s shall be sought for as a solution to the following quadratic minimization problem (see,
e.g., [74, Chapter 7]):

min
s

L−1∑
k=1

[
k

2π

LT
s− (arg ûk − arg v̂k)

]2

. (H.5)

The stationary point of the functional in (H.5) can be found by requiring that its first derivative with respect
to s be equal to zero, which yields:

s =
LT

2π

∑L−1
k=1 k(arg ûk − arg v̂k)∑L−1

k=1 k
2

. (H.6)

Let us now interpret the data {arg ûk−arg v̂k}, k = 1, 2, . . . , L−1, as independent identically distributed
random variables2 with variances

Var(arg ûk − arg v̂k)
def
= 〈(arg ûk − arg v̂k − 〈arg ûk − arg v̂k〉)2〉 = σ2.

2The requirement of independence is important. However, the requirement that all random variables be identically distributed
can be alleviated.
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The actual errors in the data may be due to the terrain noise, as well as measurement errors, instrument
noise, etc. In all those cases, it is convenient to use the description in the form of random variables. Then,
Var(k(arg ûk − arg v̂k)) = k2σ2, and according to (H.6) we can write (see, e.g., [77, Chapter 2]):

Var(s) =

(
LT

2π

)2 ∑L−1
k=1 k

2σ2

(
∑L−1
k=1 k

2)2

=

(
LT

2π

)2
σ2∑L−1
k=1 k

2
=

(
LT

2π

)2
6σ2

(L− 1)L(2L− 1)
.

(H.7)

From formula (H.7), one can easily deduce that for sufficiently large L the standard deviation of the shift s
determined by the least squares fit according to (H.6) is

σ(s) =
√

Var(s) ∼ σ√
L
. (H.8)

In other words, the error of obtaining the shift by phase correlation scales as the inverse square root of the
number of samples L. While formula (H.8) describes the asymptotic behavior of the error, the practical
values of the registration accuracy can be as low as only a few percent of a pixel, see [34–38], i.e., a few
percent of the resolution cell.
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Appendix I

Split bandwidth setup for dual carrier
probing

Linear chirps of Section 2.3 represent a natural waveform for the split bandwidth approach. Indeed, par-
titioning such a chirp in time causes a proportional partition in frequency, and the other way around. For
example, the chirp (2.18) given by P (t) = eiαt

2

eiω0t on the interval [−τ/2, τ/2] with the rate α = B
2τ and

angular bandwidth B centered around ω0 can be considered as a combination of two successive sub-chirps:

P (1)(t) = eiαt
2

eiω0t for t ∈ [−τ/2, 0] and P (2)(t) = eiαt
2

eiω0t for t ∈ [0, τ/2].

Obviously, the frequency intervals for sub-chirps P (1)(t) and P (2)(t) are [ω0 − B/2, ω0] and [ω0, ω0 + B/2],
respectively. Next, consider a new half-length envelope:

Aτ/2(t)
def
= χτ/2(t)eiαt

2

, where χτ/2(t) =

{
1, t ∈ [−τ/4, τ/4],

0, otherwise.

Then, it is easy to show that

P (1)(t) = eiα
τ2

16−iω0
τ
4 P1(t+ τ/4),

P (2)(t) = eiα
τ2

16 +iω0
τ
4 P2(t− τ/4),

(I.1)

where

P1,2(t)
def
= Aτ/2(t)eiω1,2t, ω1,2 = ω0 ∓

B

4
, and t ∈ [−τ/4, τ/4]. (I.2)

In other words, up to a constant factor of magnitude one, the sub-chirps P (1)(t) and P (2)(t) are equivalent
to time-shifted half-length half-bandwidth linear chirps P1 and P2 of (I.2) that are centered around ω1 and
ω2, respectively, and have the same rate α = B

2τ . Consequently, by processing the same raw data first by

means of the filter P1(t+ τ/4− |x − y |/c) and then by means of P2(t− τ/4− |x − y |/c) we will obtain two
images on two frequencies, ω1 and ω2. Due to the ionosphere, these images will be shifted with respect to
one another. Hence, they can be used for reconstructing the TEC NH and its first moment Q according to
the methodology of Section 2.8.

Of course, it is also possible to define sub-chirps with the sub-bandwidth b taking any value in the interval
(0, B) other than b = B/2. The expression for sub-chirp central frequencies is then ω1,2 = ω0∓ (B− b)/2. If
b < B/2, then the central part of the received signal and the central frequencies of the main chirp bandwidth
will not be used for any of the sub-images, whereas if b > B/2, then those central parts will be used for both
sub-images.1 The accuracy of the TEC reconstruction by means of image registration (Sections 2.8 and 2.9.2)
is affected by the choice of b in two ways. First, as the residual image displacement given by (2.122) (where b
should be substituted instead of B) are proportional to the sub-image resolution πc

b , the increase of b reduces

1It is also possible to use sub-bands with different bandwidths, as suggested in [106].
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the distortions. Second, as the sub-bands are limited by the bandwidth of the original chirp, the frequency
separation factor given by (2.121) with (I.2) decreases as b increases:

Z(b) =
|ω1 − ω2|

ω0
=
B − b
ω0

. (I.3)

This, in turn, increases the distortions. The value of b minimizing the residual shift given by (2.122) in the
split bandwidth setting is therefore

b∗ = arg min
b
S̃R(b) = arg min

b

πc

b

ζR
2Z(b)

= arg min
b

1

b(B − b)
=
B

2
.

In other words, it corresponds exactly to the partition of the original chirp into two half-bandwidth chirps
P1 and P2 given by (I.1).2 The actual minimum value is given by formula (2.122) with the substituted
bandwidth b∗ = B/2 and the frequency separation factor Z(b∗) = B/(2ω0), see (I.3):

S̃R =
2πcζRω0

B2
(I.4)

Similarly to (2.122), expression (I.4) does not depend on the ionospheric parameters.
By matching the residual range shift of (I.4) and the original range shift of (2.73) we get the sensitivity

threshold of the split band implementation to the ionospheric TEC:

NH =
H

R

mec

e2
ζR
ω3

0

B2
. (I.5)

Formula (I.5) yields about 8TECU for the parameters in Table 1.1 and, according to (I.4), corresponds to
S̃R ≈ 70m. When the background value of the TEC is lower than that given by formula (I.5), it is not
practical to use the split band version of dual carrier correction described in this appendix. This limitation,
however, does not apply to the full-fledged version of the algorithm that employs two independent carrier
frequencies with their respective bandwidths.

2A similar yet not equivalent optimization formulation is analyzed in [76].



Appendix J

Faraday rotation for a chirped signal

Linear time-harmonic waves
(E ,H ) ∼ ei(ωt−kr)

in a cold magnetized plasma are governed by the following equation (see, e.g., [7, 107]):

ΛijEj ≡
[k2c2

ω2

(kikj
k2
− δij

)
+ εij

]
Ej = 0. (J.1)

Let the constant external magnetic field H0 be aligned with the z-axis.1 Then, the dielectric tensor has the
form

ε =

ε⊥ −ig 0
ig ε⊥ 0
0 0 ε‖

 , (J.2)

where

ε⊥ = 1−
ω2

pe

ω2 − Ω2
, ε‖ = 1−

ω2
pe

ω2
, and g =

ω2
peΩ

ω(ω2 − Ω2)
. (J.3)

In (J.3), ωpe and Ω denote the Langmuir and Larmor frequency:

ωpe =
(4πnee

2

me

)1/2

and Ω =
eH0z

mec
, (J.4)

respectively, ne is the electron number density, and me is the electron mass. With this definition, the sign
of Ω is determined by the direction of the magnetic field. We are assuming that

ω � ωpe � |Ω|, (J.5)

which allows us to neglect the contribution of the ion motion to (J.3).
The dispersion relation for the waves governed by (J.1) is

det Λ = 0, (J.6)

and the corresponding non-trivial solutions E are called the polarization vectors. For simplicity, we first
consider the case of a parallel propagation:

|k | = |kz|, kx = ky = 0. (J.7)

If there is no magnetic field, then Ω = 0, the matrices ε and Λ are diagonal, and there are two types
of polarization: longitudinal, E = (0, 0, Ez), and transverse, E = (Ex, Ey, 0). For the latter, one of the
transverse polarization vectors can be chosen with Ex = 0 and the other with Ey = 0, which corresponds

1In this appendix, we use the xyz-notation for the coordinates.
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to two linear polarizations. When Ω 6= 0, (J.6) yields the following dispersion relation for transverse waves
(Ez = 0):

(k±)2c2

ω2
= 1−

ω2
pe

ω2
±
ω2

peΩ

ω3
,= 1− f1 ± f2, (J.8)

where we have introduced the notations

f1 ≡ f1(ω) =
ω2

pe

ω2
, f2 ≡ f2(ω) =

ω2
peΩ

ω3
, and 1� f1 � |f2|. (J.9)

Solutions to equation (J.8) correspond to two polarization vectors:(
Ex
Ey

)
∼
(

1
±i

)
, (J.10)

that represent two circular polarizations with opposite direction of rotation. The phase and group velocities
for these two circularly polarized waves are given by

v±ph
def
=

ω

k±
= c(1− f1 ± f2)−1/2, (J.11a)

v±gr
def
=
(dω
dk

)±
=

2c
√

1− f1 ± f2

2∓ f2
. (J.11b)

Formulae (J.11) along with (J.5) and (J.9) indicate that the terms due to the magnetic field H0 (i.e.,
proportional to f2) have a very small effect on vgr and vph. The only situation where this effect can be seen
is when the terms of order 1 and f1 cancel, which happens when one evaluates the difference between the
propagation speeds for two circular polarizations: (v+

gr − v−gr) or (v+
ph − v

−
ph). It is the phase speed difference

that is responsible for the Faraday rotation.
The expression for the chirp (2.18)–(2.19) traveling through an isotropic ionosphere (no external mag-

netic field and no FR) has been obtained in Appendix B by Fourier transforming the initial pulse in time,
propagating each harmonic in space with the corresponding phase velocity, and finally making the inverse
Fourier transform:

ϕ(t, r) =
1

4πr
eiω0(t−r/vph0

)χτ ′(t− r/vgr0)eiα
′(t−r/vgr0)2

def
=

1

4πr
A′(t− r/vgr0)eiω0(t−r/vph0

),

(J.12)

where

τ ′ = τ − δτ = τ − r

c

ω2
pe

ω2
0

B

ω0
and α′ = α+ δα =

B

2τ

(
1 +

δτ

τ

)
(J.13)

are the modified chirp parameters that account for the temporal dispersion. Hereafter, vph0, vgr0, and k0

refer to the phase and group velocities and the wavenumber for the isotropic plasma, i.e., calculated according
to (J.8) and (J.11) at ω = ω0 with f2 = 0.

For the case of a magnetized plasma, formula (J.12) can be extended to the circularly polarized waves.
Considering the form of the polarization vectors in (J.10), the expressions for the propagating circular
harmonics are (

Ex
Ey

)
(t, r) =

(
1
±i

)
1

4πr
A′(t− r/v±gr0

)eiω0(t−r/v±ph0
)

where v±gr0
and v±ph0

are v±gr and v±ph, respectively, with ω0 substituted for ω. The total propagating field is
a linear combination of these circular harmonics:(

Ex
Ey

)
(t, r) ∝ 1

4πr

∑
±

(
1
±i

)
C±A

′(t− r/v±gr0
)eiω0(t−r/v±ph0

)

=
1

4πr

∑
±

(
1
±i

)
C±χτ ′(t− r/v±gr0

)eiα
′(t−r/v±gr0

)2

eiω0(t−r/v±ph0
),

(J.14)
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where C± are the amplitudes. To make the emitted field (r = 0) linearly polarized in the xz-plane, we set
C+ = C− = 1. Per our earlier discussion, in the argument of χτ ′ on the second line of (J.14) we leave out
the effect of polarization on the chirp boundaries.

Introduce the “chirp time” variable

u
def
= t− r

vgr0

so that − τ ′

2
< u <

τ ′

2
.

For the retarded group travel time in (J.14), we have:

t±gr
def
= t− r

v±gr0

= u+ r
( 1

vgr0

− 1

v±gr0

)
= u+ r

(
1

c
√

1− f1
− 2∓ f2

2c
√

1− f1 ± f2

)
≈ u+ r

(
1

c
√

1− f1
− 1

c
√

1− f1
− d

df2

(
2∓ f2

2c
√

1− f1 ± f2

)∣∣∣∣
f2=0

f2

)

= u± r

(
2− f1

2c (1− f1)
3
2

f2

)

From (J.9), we know 1� f1, and therefore

t±gr ≈ u±
r

c
f2. (J.15a)

For the retarded phase travel time, we can write:

t±ph
def
= t− r

v±ph0

= u+ r

(
1

vgr0

− 1

v±ph0

)
= u+ r

(
1

vgr0

− 1

vph0

)
+ r

(
1

vph0

− 1

v±ph0

)
≈ u+ rs0 ∓

r

2c
f2,

(J.15b)

where the dispersive term

s0
def
=

1

vgr0

− 1

vph0

is the same for both polarizations and v±ph0
is defined similarly to v±gr0

. Substituting (J.15) into (J.14), we
get (

Ex
Ey

)
(t, r) ∝ χτ ′(u)

∑
±

(
1
±i

)
eiα
′(u2 ± 2u rcf2)eiω0(u+ rs0 ∓ r

2cf2)

= χτ ′(u)
∑
±

(
1
±i

)
eiω0(u+ rs0) + iα′u2

e∓iϕF , (J.16)

where

ϕF =
ω0r

2c
f2 − 2α′u

r

c
f2 =

r

2c
ω2

peΩ

[
1

ω2
0

+ 2α′u ·
( d

dω

1

ω2

)∣∣∣∣
ω=ω0

]
. (J.17)

Per our definitions of u and s0, we see that the phase in the first exponent of (J.16) is equivalent to the one
in the isotropic dispersive propagator (J.12):

ω0(u+ rs0) + α′u2 = ω0

[
t− r

vgr0

+ r
( 1

vgr0

− 1

vph0

)]
+ α′

(
t− r

vgr0

)2

= ω0

(
t− r

vph0

)
+ α′

(
t− r

vgr0

)2

.
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The quantity ϕF in the last exponent of (J.16) is the Faraday rotation angle which is equal to one half of
the difference between the phases of the helical harmonics:(

Ex
Ey

)
(t, r) ∼

(
cosϕF
sinϕF

)
A′(t− r/vgr0)eiω0(t−r/vph0

). (J.18)

Note that this shows that when the propagation is parallel to the external magnetic field, Faraday rotation
occurs clockwise [108]. The expression in the square brackets in (J.17) may be interpreted as the func-
tion f(ω) = 1

ω2 evaluated at the instantaneous frequency ω = ω0 + 2α′u, cf. formula (2.20), by means of a
first order Taylor formula. Except for the small difference between α′ and α, the expression for the Fara-
day rotation as a function of the instantaneous frequency in (J.17) coincides with the intuitive formula (3.7)
for r = 2R and β = 0.

For oblique propagation, i.e., when |kz| < |k | and β 6= 0, a careful analysis shows (see [7]) that except in

a very narrow range of nearly transverse propagation angles β, viz. | cosβ| . |Ω|
ω0

, the results obtained for the
parallel case (J.7) extend to the oblique case once Ω is replaced by Ω cosβ, which, again, transforms (J.17)
into (3.7). Thus,

ϕF (ω) =
r

2c

ω2
peΩ cosβ

ω2
(J.19)

is an expression for the Faraday rotation angle of different parts of a linear chirp parameterized by the
instantaneous frequency ω.



Appendix K

Faraday rotation and
dispersion-compensated matched filter

In this appendix, we show that the effect of dispersive propagation on SAR imaging analyzed in [8] and
Chapter 2 can be separated from that of the Faraday rotation. Given the form (J.12)–(J.13) of the radar
pulse propagating in an isotropic plasma, the matched filter focused at the reference point y and corrected
for dispersion (but not the Faraday rotation) should be taken as

Aτ ′(t− 2Ry/vgr0)eiω0(t−2Ry/vph0
)

= χτ ′(t− 2Ry/vgr0)e−iα
′(t−2Ry/vgr0)2

e−iω0(t−2Ry/vph0
),

(K.1)

where the travel distance 2Ry accounts for the round-trip. Let us also introduce the following “dispersive”
quantities that replace those of (A.2), (A.3), and (A.4):

tn ′y =
2Rny
vgr0

, tn ′z =
2Rnz
vgr0

, u′ = t−
tn ′z + tn ′y

2
,

Tn ′ =
tn ′y − tn ′z

2
, τn ′ = τ − 2|Tn ′|, ω′0 =

vgr0

vph0

ω0.

(K.2)

Applying the filter (K.1) to the dispersive propagator (J.12)–(J.13), and using the primed variables of (K.2)
and (J.13) instead of their non-primed counterparts, we will arrive at a primed equivalent of (A.1). Then,
performing the integration we obtain the same functional expression for the generalized ambiguity function
as given by (A.5) in the non-dispersive case:

W ′(y , z ) =
∑
n

e2iω′0T
n ′∑

n

∫ τn ′/2

−τn ′/2
e4iα′Tn ′u′du′.

Hence, in the case of a dispersive isotropic medium and the filter corrected accordingly, one can drop the
primes and use the non-dispersive expressions for the GAF, see (2.30)–(2.31). Factorization (3.1)–(2.35) can
also be used, because the reasoning of the rest of Appendix A applies with no changes. There will only be
minute numerical discrepancies in the final results (e.g., the resolution) between the dispersive (primed) and
non-dispersive (non-primed) case that are due to different values of the parameters in (J.13), (K.2) and in
(2.18), (2.19), (A.2), (A.3). Those discrepancies are referred to as the residual image distortions when the
matched filter has been fully corrected for the ionosphere ( [8] and Chapter 2).

Let us now see how the filter corrected for dispersion acts on a linearly polarized chirp that propagates in
a medium that is both dispersive and gyrotropic, see Appendix J. From (J.18), we get the following relation
between the actual signal ψF (t,x ) and the hypothetical signal ψ(t,x ) obtained if there were no Faraday
rotation:

ψF (t,x ) = ψ(t,x ) cosϕF . (K.3)
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If the reflected field in (K.3) is due to a scatterer at z , then the application of the filter (K.1) yields the
following expression instead of (A.1):

WF =
∑
n

∫
χ

Aτ ′(t− tn ′y )eiω
′
0(t′−tn ′y )Aτ ′(t− tn ′z )eiω

′
0(t′−tn ′z ) cosϕF (t− tn ′z ) dt, (K.4)

where t′ = tvph0/vgr0 and ϕF is given by (J.17) with r = 2Rz . The terms ω′0t
′ in the exponents in (K.4)

cancel out. Apart from those, the difference between (K.4) and (A.1) is two-fold: equation (K.4) involves the
primed constants of (J.13) and (K.2), and it also involves the amplitude factor cosϕF that varies over the
chirp. As far as the primed vs. non-primed constants, we have indicated that all the functional dependencies
in the GAF remain exactly the same, and there may only be a small numerical difference between the two
cases. Therefore, we can drop the primes in (K.4), which yields equation (3.13), and henceforth focus only
on the effect of the FR on imaging, which manifests itself through the magnitude variation cosϕF . This is
basically equivalent to thinking that the FR goes together with the otherwise undistorted, i.e., non-dispersive,
propagation.



Appendix L

Factorization of the SAR ambiguity
function in the presence of the
Faraday rotation

Our goal here is to perform the analysis similar to that in Appendix A, but taking into account the FR, i.e.,
evaluate the error due to the factorization (3.15) of the GAF (3.13)-(3.14). In (K.4), we drop the primes
and linearize cosϕF (u) around u = 0 [cf. (3.8)]:

cosϕF (unz ) ≈ p+
2q

τ
unz , (L.1)

where p and q are defined in (3.9). This yields the GAF (3.13)-(3.14), which we write as

WF (y , z ) = pW (y , z ) + q
2

τ
Wq(y , z ),

where W (y , z ) is given by (A.1), and

Wq(y , z ) =
∑
n

∫
χ

χτ (t− tny )e−iα(t−tny )2

e−iω0(t−tny )χτ (t− tnz )eiα(t−tnz )2

eiω0(t−tnz )(t− tnz ) dt. (L.2)

It is the last factor (t − tnz ) under the integral that distinguishes Wq of (L.2) from W of (A.1). Using the
substitutions from (A.2) and (A.3), we transform (L.2) into [cf. (A.5)]

Wq =
∑
n

e2iω0T
n

∫ τn/2

−τn/2
e4iαTnu(u+ Tn) du = Wq1 +Wq2, (L.3)

where the terms Wq1 and Wq2 originate from u and Tn in the round brackets, respectively.
The term Wq1 can be evaluated as follows:

Wq1 =
∑
n

e2iω0T
n

∫ τn/2

−τn/2
e4iαTnuu du =

∑
n

e2iω0T
n 1

4iTn
∂

∂α

∫ τn/2

−τn/2
e4iαTnu du

=
∑
n

e2iω0T
n 1

4iTn
∂

∂α

[
τn sinc(2ατnTn)

]
=

1

2i

∑
n

e2iω0T
n

(τn)2 sinc′(2ατnTn),

so that |Wq1| ∼ Nτ2

2 . The second term in (L.3) is estimated similarly to (A.16)–(A.18):

|Wq2| =

∣∣∣∣∣∑
n

e2iω0T
n

Tn
∫ τn/2

−τn/2
e4iαTnu du

∣∣∣∣∣ =

∣∣∣∣∣∑
n

e2iω0T
n

Tnτn sinc(2ατnTn)

∣∣∣∣∣
≈ τ0 sinc(2ατ0T 0)

∣∣∣∣∣∑
n

Tne−2iω0T
n

∣∣∣∣∣ . τ0N |max(Tn)| � |Wq1|,
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and we see that it is negligible compared to the first term because |Tn| � τ .
Thus, we will compare Wq ≈Wq1 against the expression [cf. (A.6)]

Wq(RA)(y , z )
def
= WA(y , z ) ·WqR(y , z ),

where WA(y , z ) is given by (2.36), and for the factor WqR(y , z ) we have [cf. (3.17), (3.18)]:

WqR(y , z ) =

∫
χ

A(u0
y )u0

zA(u0
z ) dt =

(τ0)2

2i
w′p(2ατ

0T 0) =
(τ0)2

2i
sinc′(2ατ0T 0). (L.4)

Similarly to (A.9), we write

2i(Wq −Wq(RA)) =
∑
n

e2iω0T
n

[(τn)2 sinc′(2ατnTn)− (τ0)2 sinc′(2ατ0T 0)].

Then, using the Taylor formula to approximate sinc′(2ατnTn) [cf. (A.14)]:

sinc′(2ατnTn) ≈ sinc′(2ατ0T 0)− 2ατ0
T
n sinc′′(2ατ0T 0),

we obtain

i(Wq −Wq(RA)) = eiΦ0(−2τ0Sq)
∑
n

Tne−2iω0T
n

= −2τ0Sqe
iΦ0

iN

2ω0
Y1 sinc′ Y1,

where Y1 is introduced right after equation (A.18), and

Sq = sinc′(2ατ0T 0) + α(τ0)2 sinc′′(2ατ0T 0).

The second term in the expression for Sq dominates because ατ2 � 1. Then, the error due to the factorization
of Wq can be estimated similarly to (A.19):

|max(Wq −Wq(RA))|
|maxWq(RA)|

∼ 2

ω0τ0
Y1Sq ≈

2

ω0τ0
Y1
B

2τ
τ2 ∼ B

ω0
(L.5)

which is of the same order of magnitude as the error of the factorization of W , see (A.19). Hence, for the
overall factorization error in (3.15) we have the same estimate: O

(
B
ω0

)
.



Appendix M

Governing equations for scattered
fields and the first Born
approximation

By subtracting equations (4.4) from respective equations (4.1) and using (4.3), we obtain the following
governing equations for the scattered fields:

1

c

∂H (sc)

∂t
+∇×E (sc) = 0 ,

1

c

∂E (sc)

∂t
−∇×H (sc) = −1

c

[
(ε− I) · ∂E

∂t
+ 4πσ ·E

]
,

∇ ·H (sc) = 0,

∇ ·E (sc) = −∇ · (D −E).

(M.1)

Note that the scattered field E (sc) appears both on the left-hand side and on the right-hand side of the
second pair of equations of (M.1). Differentiating the Ampère law in (M.1) with respect to time, we have:

1

c

∂2E (sc)

∂t2
− ∂

∂t
∇×H (sc) = −1

c

[
(ε− I) · ∂

2E

∂t2
+ 4πσ · ∂E

∂t

]
, (M.2)

and taking the curl (i.e., ∇×) of the Faraday law in (M.1), we obtain:

1

c

∂

∂t
∇×H (sc)+∇×∇×E (sc) (M.3)

=
1

c

∂

∂t
∇×H (sc) −∆E (sc) +∇∇ ·E (sc) = 0 .

The operation ∇∇· on the right hand side of equation (M.3), see also (M.4) and (M.6), means gradient of
the divergence of the corresponding vector. Substituting the time derivative of ∇ × H (sc) from equation
(M.3) into equation (M.2), and also taking into account the Gauss law of electricity in (M.1), we arrive at

1

c2
∂2E (sc)

∂t2
−∆E (sc) = −ε− I

c2
· ∂

2E

∂t2
− 4πσ

c2
· ∂E
∂t

+∇∇ · (D −E), (M.4)

where on the left-hand side we have the standard constant coefficient d’Alembert operator acting on E (sc),
and on the right-hand side we have additional occurrences of the scattered field via equations (4.2) and
(4.5). Similarly, the incident electric field that provides the the source terms for (M.4) is governed by the
d’Alembert equation:

1

c2
∂2E (inc)

∂t2
−∆E (inc) = −4π

c2
∂j (ex)

∂t
. (M.5)
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If the target material is isotropic, i.e., if ε = c2

v2 I, where v = v(x ) is the local propagation speed, and
σ = σI, then equation (M.4) simplifies, and we have:

1

c2
∂2E (sc)

∂t2
−∆E (sc) = ν(x )

∂2E

∂t2
− 4πσ

c2
∂E

∂t
+∇∇ ·

(
c2

v2
− 1

)
E , (M.6)

where the scalar quantity

ν(x )
def
=

1

c2
− 1

v(x )2
(M.7)

is known as the (target) reflectivity function, see, e.g., [6, Chapter 6].
In the context of inverse scattering, equation (M.6) shall be interpreted as an equation for ν and σ,

whereas E (sc) provides the data. A key difficulty, however, is that the scattered field is not known at the
target. For example, for the SAR applications, E (sc) is known at the receiving antenna, which is airborne
or spaceborne, whereas at the target, i.e., on the ground, it is not known. This makes the inverse problem
nonlinear, because the unknown material characteristics ν and σ are multiplied on the right-hand side of
(M.6) with the unknown scattered field.

A well-known remedy is to assume that the scattering is weak, and employ the first Born approximation,
see [67, Chapter XIII]. Under this assumption, the total field E on the right-hand side of equation (M.6) is
replaced with the incident field E (inc) only, which makes the inverse problem linear. The rationale is that
in the case of weak scattering both the deviations of the material parameters from the vacuum values are
small, and the scattered field E (sc) is also small, so their products on the right hand side of equation (M.6)
can be neglected. Moreover, the last term on the right-hand side of (M.6) drops as well because we first

invoke the Gauss law of electricity from system (4.1) in the form ∇ · c
2

v2E = 0 and then the Gauss law of
electricity for the incident field from system (4.4). Altogether this yields:

1

c2
∂2E (sc)

∂t2
−∆E (sc) = ν

∂2E (inc)

∂t2
− 4πσ

c2
∂E (inc)

∂t
. (M.8)

The first Born approximation can also be given another equivalent interpretation based on perturbation
theory. In this framework, the zeroth order solution is the incident field governed by equation (M.5), and the
equation for the first order perturbation is obtained from equation (M.6) by replacing the total solution on its
right-hand side by the zeroth order solution, which yields equation (M.8). Again, considering no more than
first order perturbations is justified only if the scattering is weak, i.e., if |ν| � 1/c2 and σ/ω � 1, where ω is
the typical frequency. These two requirements are equivalent to treating the difference between the complex
electric permittivity and one as a small parameter; it is used for deriving the first Born approximation for a
hierarchy of scattering problems in Section 4.2, see formulae (4.21) and (4.24).



Appendix N

Proof of Theorem 1

Reflection coefficients obtained with the help of the first Born approximation for a lossless birefringent target
are given by formulae (4.72). Introducing the new variable ξ = ε⊥ − 1 and denoting ζ = ∆ε, we rewrite
these formulae as follows:

SHH = −1

4

k2

q2
(ξ + β2ζ),

SVV =
1

4

(
(ξ + α2ζ)− K2

q2
(ξ + γ2ζ)

)
,

SHV = −1

4

k

q

(
α− K

q
γ
)
ζβ,

SVH =
1

4

k

q

(
α+

K

q
γ
)
ζβ.

(N.1)

These expressions can also be obtained by linearization of the exact reflection coefficients given in [94]; for
a special case of γ = 0, formulae (N.1) can be obtained by linearization of the results of [95] as well.

Formulae (N.1) define four functions of the arguments ξ, ζ, α, and γ (with β expressed via (4.48)).
Therefore, we can introduce the Jacobian:∣∣∣∣∂(SHH, SVV, SHV, SVH)

∂(ξ, ζ, α, γ)

∣∣∣∣ =

∣∣∣∣Kk4(K2(α2 − 1)− q2(γ2 − 1))ζ2

128q7

∣∣∣∣ . (N.2)

One can see that the right-hand side of (N.2) is nonzero at least for some values of the arguments. Indeed,
if ζ 6= 0 (i.e., if the material is anisotropic), then we can choose independent directional cosines α and γ so
that the numerator on the right-hand side of (N.2) is nonzero. Thus, in the vicinity of such points in the
parameter space, the transformation from (ξ, ζ, α, γ) to (SHH, SVV, SHV, SVH) is locally non-degenerate, and
preserves the number of degrees of freedom. This local non-degeneracy, however, does not guarantee that
system (N.1) can be resolved for (ξ, ζ, α, γ) given arbitrary scattering data (i.e., the left-hand side of system
(N.1)).

To find out when system (N.1) has a solution, we denote Z = K/q = tan θi, and transform the last two
equations of the system to:

S+ = γζβ, S− = αζβ, (N.3)

where

S+ =
2

Z
√

1 + Z2
(SVH + SHV) and S− =

2√
1 + Z2

(SVH − SHV).

Next, we introduce

D =
S−

S+
=
α

γ
, (N.4)

133



134 APPENDIX N. PROOF OF THEOREM ??

which, together with (4.48), yields:
β2 = 1− γ2(1 +D2). (N.5)

We can eliminate ξ from the first two equations of (N.1) to get

S̃ = ζW, (N.6)

where

S̃ = 4
(
SVV + SHH

1− Z2

1 + Z2

)
,

W = (Z2 − 1) + γ2
(
D2 − Z2 + (1− Z2)(1 +D2)

)
.

(N.7)

Using equations (N.5), (N.6), and the second equation of (N.3), we arrive at

P 2γ2D2
(
1− γ2(1 +D2)

)
= W 2, (N.8)

where P = S̃/S−. As W in formula (N.7) is linear w.r.t. γ2, equation (N.8) is biquadratic w.r.t. γ. A
solution for γ2 exists if and only if the corresponding discriminant is nonnegative, which can be shown to be
equivalent to

P 2 > 4
(D2 − Z2)(Z2 − 1)

D2
. (N.9)

Condition (N.9) can be transformed into (4.77) using equations (N.3), (N.7), and (N.8).
It should also be noted that whereas the right-hand side of (N.8) is always nonnegative, the left-hand is

nonnegative only if

0 6 γ2 6
1

1 +D2
. (N.10)

This means that if condition (N.9) for the existence of a solution to (N.8) with respect to γ2 is satisfied, then
this solution, i.e., γ2, satisfies (N.10). If (N.9) has two solutions, then both should satisfy (N.10). The second
inequality in (N.10), together with equations (N.4) and (N.5), also ensures that 0 6 α2 6 1 and 0 6 β2 6 1
(see (4.48)).

If condition (N.9) (or its equivalent (4.77)) is satisfied, then γ2 can be found by solving (N.8), and
the sign of γ can be chosen arbitrarily because the system (N.1) is invariant w.r.t. the transformation
(α, β, γ) −→ (−α,−β,−γ). Then, the value of α is obtained from (N.4), ζ from (N.6), β from any of the
equations (N.3), and ξ from the first equation of system (N.1). With that, all the material parameters are
determined, which completes the proof of Theorem 1.



Appendix O

Numerical study of the exact
formulation for the problem of
scattering off an interface of a
half-space

Theorem 1 indicates that the linearized inverse problem has a solution only for certain combinations of
the reflection coefficients SHH, SVV, SHV, SVH, and the incidence angle θi. For example, if α = 0 then
SHV = SVH, see formulae (N.1), and the right-hand side of inequality (4.77) is negative provided that
θi > π/4. Hence, inequality (4.77) holds automatically, and the linearized inverse problem always has a
solution for θi > π/4. On the other hand, for θi < π/4 inequality (4.77) puts an additional constraint on
the values of the reflection coefficients and thus implies a limitation of solvability of the linearized inverse
problem.

While inequality (4.77) may be given a physical interpretation later on, currently we would like to try
and answer the question of whether the foregoing limitation of solvability (Theorem 1) is due to the type
of the target material that we have chosen (a birefringent dielectric with weak anisotropic conductivity) or
to the linearization itself. Expressions for the exact (i.e., not linearized) reflection coefficients can be found,
e.g., in [94, equation (6.61)]. However, that system [unlike the linearized system (N.1)] has proven too
complicated for analytical inversion. Instead, we employ a numerical approach. First, we sample the domain
of feasible material parameters (typically, ε‖ and ε⊥ are taken between 1 and 5) with a sufficiently high rate,
and calculate the exact reflection coefficients for every sample, i.e., solve the direct problem exactly with the
help of [94]. In doing so, we obtain a cloud of points in the three-dimensional space of coefficients SHH, SVV,
and SHV = SVH. Areas of no solution would correspond to the regions with no points inside the cloud, i.e.,
to the voids. To see whether or not there are any voids we plot several cross-sections of the cloud normal to
the SVH axis. As, however, the cloud consists of discrete points, we rather take slices of finite thickness in
SVH and collapse all the points inside each slice onto the (SHH, SVV) plane for plotting.

The visualization we have described reveals distinct voids in the cloud of the results for the exact for-
mulation of the direct scattering problem. Those voids can, in particular, be clearly seen in Figure O.1,
where we are showing the values of ε‖ as they depend on SHH, SVV, and SVH. Inside the voids the solution
to the original (i.e., not linearized) inverse problem does not exist, because the corresponding values of the
reflection coefficients cannot be obtained using any choice of the material parameters.

Moreover, as θi = 2π/9 6 π/4 in Figure O.1, the linearized problem may have no solution according to
Theorem 1. The region where the linearized solution does not exist [see inequality (4.77)] is bounded by two
straight red lines on each of the plots in Figure O.1. We see that when the scattering is weak, i.e., when all
the reflection coefficients SHH, SVV, and SVH are small, those red lines appear tangential to the apparent
boundaries of a given void that corresponds to the exact formulation. This is precisely the behavior that
would be natural to expect in the case when both the linearized and the original inverse problem have regions
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Figure O.1: ε‖ as a function of the exact reflection coefficients for α = 0 and θi = 2π/9. The value of ε‖
is indicated by color. The horizontal axis is SHH and the vertical axis is SVV, as indicated in the middle
plot. The approximate ranges for the cloud of the results are −0.5 6 SHH 6 0, −0.2 6 SVV 6 0.6, and
0 6 |SVH| 6 0.11. The gap between two red lines corresponds to the region for which inequality (4.77) does
not hold, i.e., for which the linearized inverse problem has no solution.

with no solution. This tangential behavior can be observed more clearly in Figure O.2, which is a zoom-in
of the middle plot in the top row of Figure O.1.

Let us also note that whereas for larger values of the incidence angle, θi > π/4, the linearized inverse
problem has a solution, the original, i.e., not linearized, inverse problem may still have no solutions. We
illustrate that in Figure O.3, which is similar to Figure O.1 in every respect except that θi = π/3 and the
computed ranges for SHH, SVV, and SVH appear somewhat different. From Figure O.3 it is apparent that
when all three coefficients SHH, SVV, and SVH are small, which is basically equivalent to the linear regime
(weak scattering), there are no voids in the cloud of the results and the solution exists, as expected. As,
however, the scattering becomes stronger so that SVH increases, a void appears again indicating a limitation
of solvability.1

Altogether, our rigorous analysis of the first Born approximation along with the simulations conducted
for the unabridged formulation indicate that for the weak scattering regime when the two formulations are
supposed to be close, the linear and nonlinear problems indeed have or do not have a solution simultaneously.
In particular, the full nonlinear problem will have no solution for the same combinations of parameters for
which the linearized problem has no solution. This means that the linearization is apparently not the
reason for the loss of solvability, and that the result of Theorem 1 should most likely be attributed to the
properties of the target material that we have taken for our analysis rather than “blamed” on the first Born
approximation.

1The voids we discuss here provide additional constraints, beyond the general limitations on the solvability of the inverse
problem that come, e.g., from the conservation of energy.
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Figure O.2: Zoom-in of the middle plot in the top row of Figure O.1.
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Figure O.3: ε‖ as a function of the exact reflection coefficients for α = 0 and θi = π/3. The value of ε‖
is indicated by color. The horizontal axis is SHH and the vertical axis is SVV, as indicated in the middle
plot. The approximate ranges for the cloud of the results are −1 6 SHH 6 0, −0.4 6 SVV 6 0.4, and
0 6 |SVH| 6 0.2.
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